
CSE 708 - Programming Massively Parallel 

Systems

Parallel Matrix Multiplication

Name: Ashutosh Dubey

UBIT Name: ashutos2

Person Number: 50479324

Instructor: Prof. Russ Miller



Problem Statement

Develop an efficient parallel matrix multiplication algorithm for

hardware accelerators in deep learning, specifically convolutional

neural networks (CNNs) used in computer vision.



Practical Applications

 Computer Vision

 Feature Extraction in Machine Learning

 Image Processing



Sequential Approach
 Ensure the no of cols of first matrix A[n][n] equals the no of rows of 

second matrix B[m][m].

 Initialize an empty resulting matrix C

 Create three nested for loops, the outermost loop would 

iterate through no of rows of first matrix

 The second loop would iterate through no of cols of second matrix

 The third loop would iterate through no of rows of second matrix

 Compute element-wise multiplication of A[i][k] and B[k][j] inside the 

innermost loop and accumulate the products in a temporary 

variable

 Assign the sum to C[i][j]

 Repeat above steps for all elements in C, with i ranging from 0 to n 

and j from 0 to m.



Sequential Imp Output

GraphTabular Data
Processors Input size nodes Cores per node Time

1 8000*8000 1 1 00:25:35

The output for the sequential implementation of matrix multiply program-

For two matrices A and B of size 8000*8000 sequentially, The graphs depicts that the running 

time was around 25 mins which is quite a lot

The other graph showcases how the CPU utilization changed over time, it was around 8 

percent at max and around 6 percent on average which is quite low



Setup

 We used a special command called '--exclusive' in order to make 

sure the computer program reserves all the processing power to 

itself while running

 This command will tell the system to not to share any CPU cores with 

any other program

 This is how we made sure that no other programs could make use of 
the cores which were allocated to my program.



Setup

 The total number of nodes 

requested over here is 120 which is 

specified using --nodes flag

 Number of cores per node  

requested over here  is 1 which is 

specified using –ntasks-per-node 

flag

 Number of processors 

requested=(total number of nodes 

requested) * (number of cores per 

node)

 Thus, we have specified 120 

processors in the srun command 



Parallel Approach using 

MPI(Partially implemented)
 Given Matrix A and B of size N*N, and we have p no of processors

 The workload could be divided such that-

 Each processor is responsible for (N/p) rows of matrix A and (N/p) 

cols of matrix B.

 Matrix A is partitioned into (N/p) equally-sized vertical strips, and 

each processor is assigned one of these strips.

 Matrix B is similarly partitioned into (N/p) equally-sized horizontal 

strips, and each processor is assigned one of these strips.

 Each processor performs local matrix multiplication on its assigned 
portion of A and B.

 The local results from each processor are gathered and combined 

to construct the final result matrix C.



MPI Library functions

 MPI_Init(&argc, &argv): MPI library's initialization function. It is the starting point 
for any MPI program and must be called before any other MPI functions are 
used.

 MPI_COMM_WORLD: a communicator that allows to perform communication 
and coordination operations involving all processes in MPI program

 MPI_Comm_rank(MPI_COMM_WORLD, &rank): To retrieve the rank of the calling 
process within the specified communicator.

 Rank: an integer value ranging from 0 to num cores - 1, where num cores is the 
total number of cores in the communicator.

 MPI_Comm_size(MPI_COMM_WORLD, &num cores): To retrieve the total number 
of processes within the specified communicator



MPI Library functions

 MPI_Bcast : Broadcasts data from the process with rank 0 (the root 

process) to all other processes in the specified communicator

 MPI_Gather: Collects data from each process's local result, 

specifically the portion determined by starting row, and combines 

them into the result buffer on process 0 within the 

MPI_COMM_WORLD communicator.



Parallel 2 processors

Tabular Data
Processors Input size nodes Cores per node Time

2 8000*8000 1 2 00:16:35

Graph

I partially implemented a parallel matrix multiplication algo with two processors on 

matrices of size 8000x8000. The running time was approximately 17 minutes, a 

significant improvement over the sequential version. The CPU utilization graph indicates 

a maximum of 14% and an average of 12%, which is double the utilization observed in 

the sequential approach.



Parallel 4 processors

Tabular Data
Processors Input size nodes Cores per node Time

4 8000*8000 1 4 00:10:35

Graph

Implemented parallel matrix multiplication algo with 4 processors on 8000x8000 

matrices. Running time was approximately 10 minutes, showing improvement 

over the 2-processors execution. CPU utilization peaked at 26% and averaged 

around 23%, nearly double that of the 2-processors execution.



Parallel 6 processors

Tabular Data
Processors Input size nodes Cores per node Time

6 8000*8000 1 6 00:08:35

Graph

Implemented parallel matrix multiplication with 6 processors on 

8000x8000 matrices. Running time was approximately 8 minutes, an 

improvement over the 4-processors execution. CPU utilization 

peaked at 15% and averaged around 13% for 6 processors.



Parallel 8 processors

Tabular Data
Processors Input size nodes Cores per node Time

8 8000*8000 1 8 00:014:35

Graph

Implemented parallel matrix multiplication with 8 processors on 

8000x8000 matrices. Running time was approximately 15 minutes, 

slightly more than the 4 and 6-processors executions. CPU utilization 

peaked at 51% and averaged around 47%, likely influenced by inter-

process communication overhead.



Setup - 1 Node
Tabular Data

Processors Input size nodes Cores per 

node

Time 

20 16000*160

00

1 20 00:03:43

40 16000*160

00

1 40 00:02:02

60 16000*160

00

1 60 00:01:10

80 16000*160

00

1 80 00:00:40

100 16000*160

00

1 100 00:00:55

120 16000*160

00

1 120 00:00:59

140 16000*160

00

1 140 00:01:00

Graph

Implemented parallel matrix multiplication algo from 20 to 140 processors on 16000 x 16000 

matrices. the running time decreased with an increasing number of cores up to 80 processors. 

Beyond this point, the running time increased due to communication overhead. The threshold 

for optimal performance was identified at 80 processors or cores per node



Key Observations

 Running Time: The running time decreased significantly on the parallel 
implementation.

 Running Time: The running time kept on decreasing while increasing the 
no of cores from 2 processors to 4 processors and 4 processors to 6 
processors.

 Threshold:  As we know that after a certain threshold, parallelism does 
not help in speedup due to  overhead of inter-process communication.

 Threshold point: While running on 8 processors, the running time 
increased, It kept on increasing further with more cores.

 CPU Utilization: It almost doubled on the parallel Implementation 

 CPU Utilization: It increased further on increasing num of cores from 2 to 
4.



Next Steps

 As of now, Matrix A is only splitted among various processors, going 

forward would break down Matrix B too into chunks and allocate it 

to processors.



Parallel Approach (Fully 

implemented)
 Given Matrix A and B of size N*N, and we have p no of processors

 The workload could be divided such that-

 Each processor is responsible for (N/p) rows of matrix A and (N/p) 
cols of matrix B.

 Matrix A is partitioned into (N/p) equally-sized vertical strips, and 
each processor is assigned one of these strips.

 Matrix B is similarly partitioned into (N/p) equally-sized horizontal 
strips, and each processor is assigned one of these strips.

 Each processor performs local matrix multiplication on its assigned 
portion of A and B.

 The local results from each processor are gathered and combined 
to construct the final result matrix C.



Setup1 - 1 core per Node 

Tabular Data Graph
Processors Input size nodes Cores per node Time 

20 16000*16000 20 1 00:01:49

40 16000*16000 40 1 00:00:40

60 16000*16000 60 1 00:00:31

80 16000*16000 80 1 00:00:28

100 16000*16000 100 1 00:00:26

120 16000*16000 120 1 00:00:27

140 16000*16000 140 1 00:00:29

160 16000*16000 160 1 00:00:31

In a single core per node setup, the parallel algorithm was tested with 16000*16000 
matrices, the running time decreased with an increasing number of cores up to 80 processors. 
Beyond this point, the running time increased due to communication overhead. The threshold for 
optimal performance was identified at 80 processors or cores per node



Setup 2 - 2 cores per Node 

Tabular Data Graph

Processors Input size nodes Cores per node Time 

20 16000*16000 10 2 00:00:57

40 16000*16000 20 2 00:00:30

60 16000*16000 30 2 00:00:26

80 16000*16000 40 2 00:00:26

100 16000*16000 50 2 00:00:24

120 16000*16000 60 2 00:00:25

140 16000*16000 70 2 00:00:26

160 16000*16000 80 2 00:00:29

In multi core per node setup, the parallel algorithm was tested with 

16000x16000 matrices. The running time decreased with an increasing number 

of cores up to 100 processors. Beyond this point, the running time increased 

due to communication overhead. The threshold for optimal performance was 

identified at 100 processors using 2 cores per node.



Setup 3 - 4 cores per Node 

Tabular Data Graph

Processors Input size nodes Cores per node Time 

20 16000*16000 5 4 00:01:00

40 16000*16000 10 4 00:00:31

60 16000*16000 15 4 00:00:27

80 16000*16000 20 4 00:00:22

100 16000*16000 25 4 00:00:26

120 16000*16000 30 4 00:00:23

140 16000*16000 35 4 00:00:29

160 16000*16000 40 4 00:00:33

180 16000*16000 45 4 00:00:37

In multi core per node setup, the parallel algorithm was tested with 16000x16000 

matrices. The running time decreased with an increasing number of cores up to 80 

processors. Beyond this point, the running time increased due to communication 

overhead. The threshold for optimal performance was identified at 80 processors 

using 4 cores per node.



Setup 4 - 8 cores per Node 

Tabular Data Graph
Processors Input size nodes Cores per node Time 

24 16000*16000 3 8 00:02:38

40 16000*16000 5 8 00:01:13

56 16000*16000 7 8 00:00:46

80 16000*16000 10 8 00:00:34

96 16000*16000 12 8 00:00:30

120 16000*16000 15 8 00:00:27

136 16000*16000 17 8 00:00:26

152 16000*16000 19 8 00:00:41

168 16000*16000 21 8 00:00:53

184 16000*16000 23 8 00:00:57

In multi core per node setup, the parallel algorithm was tested with 16000x16000 

matrices. The running time decreased with an increasing number of cores up to 

136 processors. Beyond this point, the running time increased due to 

communication overhead. The threshold for optimal performance was identified 

at 136 processors using 8 cores per node.



Key Observations

 Running Time: The running time decreased significantly on the 

parallel implementation.

 Running Time: The running time decreased  significantly while 

increasing the no of cores per node from 2 to 4 cores and 4  to 6 

cores and 6 to 8 cores.

 Threshold:  As we saw that after a certain threshold, parallelism does 

not help in speedup due to the overhead of inter-process 

communication.

 Threshold point: While running on  more than 8 cores per node, the 

running time increased, It kept on increasing further with more 
nodes.



References

 MPI Tutorial- https://mpitutorial.com/tutorials/

 MPI Docs- https://www.mpi-forum.org/docs/

 Dr Jones Lectures on MPI

 Matplot lib- https://matplotlib.org/

https://mpitutorial.com/tutorials/
https://www.mpi-forum.org/docs/
https://matplotlib.org/


Thank you!!


	Slide 1: CSE 708 - Programming Massively Parallel Systems  Parallel Matrix Multiplication  Name: Ashutosh Dubey UBIT Name: ashutos2 Person Number: 50479324 Instructor: Prof. Russ Miller
	Slide 2: Problem Statement
	Slide 3: Practical Applications
	Slide 4: Sequential Approach
	Slide 5: Sequential Imp Output
	Slide 6:  Setup
	Slide 7: Setup
	Slide 8: Parallel Approach using MPI(Partially implemented)
	Slide 9:  MPI Library functions
	Slide 10:  MPI Library functions 
	Slide 11: Parallel 2 processors
	Slide 12: Parallel 4 processors
	Slide 13: Parallel 6 processors
	Slide 14: Parallel 8 processors
	Slide 15: Setup - 1 Node
	Slide 16: Key Observations
	Slide 17: Next Steps
	Slide 18: Parallel Approach (Fully implemented)
	Slide 19: Setup1 - 1 core per Node 
	Slide 20: Setup 2 - 2 cores per Node 
	Slide 21: Setup 3 - 4 cores per Node 
	Slide 22: Setup 4 - 8 cores per Node 
	Slide 23: Key Observations
	Slide 24: References
	Slide 25

