
Instructor: Dr. Russ Miller

Prepared by: Ashwin Panditrao Jadhav

PARALLEL
MERGE SORT
USING MPI

Agenda

• Sequential Merge Sort Algorithm

• Sequential Merge Sort Analysis

• Parallel Merge Sort Algorithm

• Experimentation in CCR

• Parallel Algorithm Results and Analysis

• Challenges and Learnings

• Conclusion

• References

2

SEQUENTIAL
MERGE SORT

Sequential Merge
Sort Algorithm
(Divide)

Divide Step

• We first divide the array in halves.

• Then each of these two lists are further broken down in the same manner.

• Until they can no longer be divided.

• Which leaves only one element at the end.

Sequential Merge
Sort Algorithm
(Conquer &
Combine)

Conquer & Combine Step

• We one by one take each element from left and right like in a loop.

• We do a comparison between these two elements..

• The smaller element is appended to the list first.

• Then the pointer of the list whose element is appended is incremented..

Sequential Merge
Sort Analysis

6

Data Size Time Taken (in

seconds)

10000(10K) 0.00616329

100000(100K) 0.0609607

500000(500K) 0.213565

1000000(1M) 0.335775

10000000(10M) 3.00149

500000000(500M) 190.345

1000000000(1B) 424.575
M: Million

B: Billion
0
.0

0
6
1
6
3
2
9

0
.0

6
0
9
6
0
7

0
.2

1
3
5
6
5

0
.3

3
5
7
7
5

3
.0

0
1
4
9

1
9
0
.3

4
5

4
2
4
.5

7
5

1 0 K 1 0 0 K 5 0 0 K 1 M 1 0 M 5 0 0 M 1 B

TIME TAKEN (IN SECONDS)

Time Taken (in seconds)

PARALLEL
MERGE SORT
ALGORITHM

Proposed Parallel Merge Sort
Algorithm

8

Proposed Parallel Merge Sort
Algorithm(Divide)

9

1. Node having the rank 0 is the host node. It gets the entire

dataset and computes the height of node.

2. Host node with rank 0, initiates the parallel merge operation.

3. For internal nodes (height > 0) and node 0:

a) Divide the data in half and send the right half to the right

child.

b) Recursively call parallel merge operation for the left half on

the same node.

Proposed Parallel Merge Sort
Algorithm(Conquer)

10

1. Now, receive the sorted data from right child.

2. Merge the sorted left and right child halves.

3. If it is a leaf node, just do internal sorting.

4. Send the sorted data to parent node.

5. Finally, node 0 will have the entire sorted result.

Experimentation in CCR:
SBATCH script

11

Experiments:

12

• For some constant data size, plotted sorting time vs number of processors.

• Tested for 7 different data sizes: 10K, 100K, 500K, 1M, 10M, 500M, 1B

• For number of processors: 2, 4, 8, 16, 32, 64, 128, 256

• Plotted speed-up of parallel approach vs the sequential approach.

• Also, shown and plotted sorting time for a particular data size running on different

number of processors.

Runtime Vs Number of
Processors (keeping data size
constant)

13

Runtime Vs Number of
Processors for Data Size:
10000(10K)

14

of Processors Time Taken (in

seconds)

2 0.000725

4 0.000406

8 0.000273

16 0.000157

32 0.0000802

64 0.0000637

128 0.000168

256 0.000338

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 50 100 150 200 250 300

PROCESSORS VS RUNTIME

Runtime Vs Number of
Processors for Data Size:
100000(100K)

15

of Processors Time Taken (in

seconds)

2 0.00727

4 0.003968

8 0.001958

16 0.001325

32 0.000734

64 0.0003761

128 0.001838

256 0.002351

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200 250 300

PROCESSORS VS RUNTIME

Runtime Vs Number of
Processors for Data Size:
1000000 (1M)

16

of Processors Time Taken (in

seconds)

2 0.067182

4 0.036808

8 0.02138

16 0.01354

32 0.007387

64 0.004175

128 0.013749

256 0.019365 Number of Processors

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200 250 300

PROCESSORS VS RUNTIME

Runtime Vs Number of
Processors for Data Size:
500000000 (500M)

17

of Processors Time Taken (in

seconds)

2 36.810129

4 20.218637

8 13.750573

16 7.810129

32 4.1484

64 2.752187

128 3.427604

256 8.982689

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

PROCESSORS VS RUNTIME

Runtime Vs Number of
Processors for Data Size:
1000000000 (1B)

18

of Processors Time Taken (in

seconds)

2 75.223702

4 41.084074

8 26.964285

16 18.385541

32 11.179744

64 7.262068

128 23.951129

256 35.620181

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

PROCESSORS VS RUNTIME

Speedup: Compared to
sequential time

19

Speedup for Data Size:
100000 (100K)

20

of Processors Speedup

2 63.8524

4 65.36307

8 81.13416

16 83.46807

32 83.05272

64 79.16208

128 67.68661

256 59.968949 Number of Processors

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

SpeedUp

Speedup for Data Size:
1000000 (1M)

21

of Processors Speedup

2 61.49799

4 61.233758

8 67.150509

16 69.87446

32 84.454548

64 85.8042514

128 64.21776

256 61.92718
Number of Processors

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

SpeedUp

Speedup for Data Size:
1000000000 (1B)

22

of Processors Speedup

2 56.441651

4 59.103342

8 62.15745

16 71.230928

32 82.379771

64 85.584647

128 60.67217

256 57.950709
Number of Processors

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

SpeedUp

Runtime Vs Data Size (keeping
number of processors constant)

23

Runtime Vs Data Size for Processors 2, 32
and 256

24

Data Size Runtime for 2 Processors Runtime for 32

Processors

Runtime for 256

Processors

10000(10K) 0.000725 0.0000802 0.000338

100000(100K) 0.00727 0.000734 0.002351

1000000(1M) 0.067182 0.007387 0.019365

500000000(500M) 36.810129 4.1484 8.982689

1000000000(1B) 75.223702 11.179744 35.620181

Runtime Vs Data Size for Processors 2, 32 and
256 Line Chart

25

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Runtime Vs Data Size and # Processors

Runtime for 2 processors Runtime for 32 Processors Runtime for 256 Processors

Challenges & Learnings

• Generating and Collecting huge data at processor with rank 0.

• Long running time for 128 and 256 number of processors.

• Analyzed, how the runtime increases as the number of nodes

increases against the data size.

• Understood where parallelization should be used to speed up

the performance of sequential algorithm.

• Learned about MPI, CCR and Slurm Jobs.

• Learned about different SLURM commands like squeue, srun,

sbatch,etc

26

Conclusion

• As per the results and graphs, we can see that the parallelism

can be efficient only up-to a particular number of processor.

• And if we want to add further processors by adding the nodes, it

also adds the network latency which again add up to the

communication overhead.

• Further, I have used MPI_Scatter and MPI_Gather which are

very costly in terms of communication time and eats up lot of

bandwidth.

27

References

• Dr. Russ Miller’s webpage: https://cse.buffalo.edu/faculty/miller/teaching.shtml

• https://www.programiz.com/dsa/merge-sort

• https://www.mcs.anl.gov/~itf/dbpp/text/node127.html

• https://developer.nvidia.com/blog/merge-sort-explained-a-data-scientists-algorithm-guide/

• http://selkie-macalester.org/csinparallel/modules/MPIProgramming/build/html/mergeSort/mergeSort.html

• https://studylib.net/doc/5894233/parallel-merge-sort-implementation

• https://developer.nvidia.com/blog/merge-sort-explained-a-data-scientists-algorithm-guide/

• https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-workshops-and-training-

documents

28

https://www.programiz.com/dsa/merge-sort
https://www.mcs.anl.gov/~itf/dbpp/text/node127.html
http://selkie-macalester.org/csinparallel/modules/MPIProgramming/build/html/mergeSort/mergeSort.html
https://studylib.net/doc/5894233/parallel-merge-sort-implementation
https://developer.nvidia.com/blog/merge-sort-explained-a-data-scientists-algorithm-guide/
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-workshops-and-training-documents

Thank You!

29

	Slide 1: Parallel Merge Sort using MPI
	Slide 2: Agenda
	Slide 3: Sequential Merge Sort
	Slide 4: Sequential Merge Sort Algorithm (Divide)
	Slide 5: Sequential Merge Sort Algorithm (Conquer & Combine)
	Slide 6: Sequential Merge Sort Analysis
	Slide 7: Parallel Merge Sort algorithm
	Slide 8: Proposed Parallel Merge Sort Algorithm
	Slide 9: Proposed Parallel Merge Sort Algorithm(Divide)
	Slide 10: Proposed Parallel Merge Sort Algorithm(Conquer)
	Slide 11: Experimentation in CCR: SBATCH script
	Slide 12: Experiments:
	Slide 13: Runtime Vs Number of Processors (keeping data size constant)
	Slide 14: Runtime Vs Number of Processors for Data Size: 10000(10K)
	Slide 15: Runtime Vs Number of Processors for Data Size: 100000(100K)
	Slide 16: Runtime Vs Number of Processors for Data Size: 1000000 (1M)
	Slide 17: Runtime Vs Number of Processors for Data Size: 500000000 (500M)
	Slide 18: Runtime Vs Number of Processors for Data Size: 1000000000 (1B)
	Slide 19: Speedup: Compared to sequential time
	Slide 20: Speedup for Data Size: 100000 (100K)
	Slide 21: Speedup for Data Size: 1000000 (1M)
	Slide 22: Speedup for Data Size: 1000000000 (1B)
	Slide 23: Runtime Vs Data Size (keeping number of processors constant)
	Slide 24: Runtime Vs Data Size for Processors 2, 32 and 256
	Slide 25: Runtime Vs Data Size for Processors 2, 32 and 256 Line Chart
	Slide 26: Challenges & Learnings
	Slide 27: Conclusion
	Slide 28: References
	Slide 29: Thank You!

