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Overview
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- Aim to enhance knowledge gained on parallel programming

- Implemented the project on OpenMP, different model than 
MPI, therefore obtaining detailed knowledge on different 
aspects of parallel programming

- Harness massively parallel computing machines at CCR

- Used OpenMP directive on machines with 2, 4, 8 and 16 
cores respectively. 

Background
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• Bubble sort is a O(N2) sorting algorithm.
• It is simple to understand and implement.

So why discuss it?
Understandable
Implementable
Can be parallelized

Consider Bubble Sort



‘-

6

• Parallelizable version of Bubble sort 
• Requires N passes through the array.
• Each pass through the array analyzes either:

• Every pair of odd indexed elements and the preceding 
element, or

• Every pair of even indexed elements and the preceding 
element.

• Within each pass, elements that are not in order are swapped.

Odd Even Transposition sort
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Pictorial depiction
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- Run OpenMP code
- One node should have multiple threads
- Aim is to allocate nodes with largest number of cores (i.e. 16 cores).
- Sorted dataset of varying sizes
- Used standard dataset
- There are 2621440 integers in the dataset which is used with a total size of 10.48 

MB
- Take integer blocks of varying sizes

Goals of this project
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Goals of this project (cont)

- We took two groups of data containing sub-groups amongst them:
- Small Group: 0.00625, 0.0125 and 0.025 million
- Large Group: 0.05, 0.1, 0.125, 0.25, 0.50, 1.00, 1.5 and 

2.00 million
- The reason for using two subgroups was to demonstrate how 

OpenMP performs to sort various groups of data. 
- Provide Runtime graphs when data size and nodes are both doubled
- Provide Runtime graphs when data size is constant and nodes are 

doubled
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Process flow
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SLURM output



‘-

12



‘-

13

Obtained results
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Obtained results [cont]
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Obtained Results [cont]
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Obtained Results [cont]
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Obtained Results [cont]
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Results [cont]
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- For 32 cores:
- Difficult to obtain a single 

server with 32 cores by salloc
command in CCR.

- Experiments were run in 
vortex1 front end of CCR 
which was equipped with 32 
cores.

- It was conducted during off-
peak hours (between 3:00 AM 
– 4:00 AM EST)

Results (cont.) with 32 threads (i.e. PEs)
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Double data size and PEs (threads)
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Speedup
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- Presented results of the runtimes in a multitude of dimensions
- Discussions

- OpenMP’s runtime is desirable for considerably large datasets
- Performance degrades when large number of PEs are used for data 

of size 25000 or lower
- Desirable behavior when we double data and PEs

Made good use of free resources during thanksgiving

Outcome
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• Dr. Russ Miller’s webpage: 
https://cse.buffalo.edu/faculty/miller/teaching.shtml

• Parallel Odd Even Transposition sort: 
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Asif-Imran-Spring-
2018.pdf

• Parallel Computing Sorting https://cs.nyu.edu/courses/spring14/CSCI-
UA.0480-003/lecture11.pdf

References
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Thank you


