
‘-

1

Learning and Implementing Odd-even 
transposition sort in OpenMP

CSE 702: SEMINAR ON 

PROGRAMMING MASSIVELY 

PARALLEL SYSTEMS



‘-

2

PREPARED BY: 

ASIF IMRAN (UB PERSON NUMBER: 50249959)

PREPARED FOR:

PROF. DR. RUSS MILLER

UB DISTINGUISHED PROFESSOR, 

DEPARTMENT OF COMPUTER SCIENCE AND 

ENGINEERING, UNIVERSITY AT BUFFALO (SUNY)



‘-

3

- Overview of Odd Even Transposition Sort

- Discussions of Goals and Assumptions

- Obtained results

- PE’s behavior

- Discussion of results

- References

Overview



‘-

4

- Aim to enhance knowledge gained on parallel programming

- Implemented the project on OpenMP, different model than 
MPI, therefore obtaining detailed knowledge on different 
aspects of parallel programming

- Harness massively parallel computing machines at CCR

- Used OpenMP directive on machines with 2, 4, 8 and 16 
cores respectively. 

Background



‘-

5

• Bubble sort is a O(N2) sorting algorithm.
• It is simple to understand and implement.

So why discuss it?
Understandable
Implementable
Can be parallelized

Consider Bubble Sort



‘-

6

• Parallelizable version of Bubble sort 
• Requires N passes through the array.
• Each pass through the array analyzes either:

• Every pair of odd indexed elements and the preceding 
element, or

• Every pair of even indexed elements and the preceding 
element.

• Within each pass, elements that are not in order are swapped.

Odd Even Transposition sort



‘-

7

Pictorial depiction



‘-

8

- Run OpenMP code
- One node should have multiple threads
- Aim is to allocate nodes with largest number of cores (i.e. 16 cores).
- Sorted dataset of varying sizes
- Used standard dataset
- There are 2621440 integers in the dataset which is used with a total size of 10.48 

MB
- Take integer blocks of varying sizes

Goals of this project



‘-

9

Goals of this project (cont)

- We took two groups of data containing sub-groups amongst them:
- Small Group: 0.00625, 0.0125 and 0.025 million
- Large Group: 0.05, 0.1, 0.125, 0.25, 0.50, 1.00, 1.5 and 

2.00 million
- The reason for using two subgroups was to demonstrate how 

OpenMP performs to sort various groups of data. 
- Provide Runtime graphs when data size and nodes are both doubled
- Provide Runtime graphs when data size is constant and nodes are 

doubled



‘-

10

Process flow



‘-

11

SLURM output



‘-

12



‘-

13

Obtained results

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16 18

Running time for data size of 6250

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

Running time when data size is 12500



‘-

14

Obtained results [cont]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

Run time when data size is 25000

0

1

2

3

4

5

6

0 5 10 15 20

Run time when data size is 50000



‘-

15

Obtained Results [cont]

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18

Run time when data size is 100000

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

Run time for data size 125000



‘-

16

Obtained Results [cont]

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

Run time for datasize 250000

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18

Run time when data size is 500000



‘-

17

Obtained Results [cont]

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18

Run time for data size 1 million

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18

Run time when data size is 1.5M



‘-

18

Results [cont]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18

Run time when data size is 2M



‘-

19

- For 32 cores:
- Difficult to obtain a single 

server with 32 cores by salloc
command in CCR.

- Experiments were run in 
vortex1 front end of CCR 
which was equipped with 32 
cores.

- It was conducted during off-
peak hours (between 3:00 AM 
– 4:00 AM EST)

Results (cont.) with 32 threads (i.e. PEs)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

OpenMP runtime with 1.2M data



‘-

20

Double data size and PEs (threads)

0

50

100

150

200

250

300

350

400

1 2 3 4

Along X -axis, a value of P implies 2^P PEs

Double Data Size

125K

250K

500K

1M



‘-

21

Speedup

1.699817 1.749219 1.667626 1.728973

2.779329 2.98309 2.938635 2.951205

3.977794

5.047386 4.86387 5.087806

4.211835

6.873998
7.348921

8.244784

1 2 3 4

Speedup

T-2 Speedup T-4 Speedup T-8 Speedup T-16 Speedup



‘-

22

- Presented results of the runtimes in a multitude of dimensions
- Discussions

- OpenMP’s runtime is desirable for considerably large datasets
- Performance degrades when large number of PEs are used for data 

of size 25000 or lower
- Desirable behavior when we double data and PEs

Made good use of free resources during thanksgiving

Outcome



‘-

23

• Dr. Russ Miller’s webpage: 
https://cse.buffalo.edu/faculty/miller/teaching.shtml

• Parallel Odd Even Transposition sort: 
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Asif-Imran-Spring-
2018.pdf

• Parallel Computing Sorting https://cs.nyu.edu/courses/spring14/CSCI-
UA.0480-003/lecture11.pdf

References



‘-

24

Thank you


