PARALLEL
UICKSORT

Student: Chia Chen Chen
Advisor: Prof. Russ Miller

-
~ - -

—————
‘ﬂ

-[é University at Buffalo The State University of New York

.[ﬂ University at Buffalo The state University of New York

Sorting Algorithm

* A Sorting Algorithm is used to rearrange a given array or
list elements according to a comparison operator on the
elements

 The comparison operator is used to decide the new order
of element in the respective data structure.

i . EEp
{—

~
hY
Y
~
~
2 s
s SN
Y
’ LY
,

-[é University at Buffalo The state University of New York

Sorting

|
TRz

l

<)

* Abrute way is to start from the array beginning and
go through every elements every time
» Store the first element in an empty array a,
 lterating the array, search for a smaller and hasn't
been stored yet element 3//

-[ﬁ University at Buffalo The state University of New York

Sorting

anBne

Then store the next element and continue the iteration
until all the elements have been added

~
~
hY
Y
~
~
4 P

7’ ~
i hY
’ LY

,

-[ﬁ University at Buffalo The state University of New York

Sorting

anBne

ADnoE

Then store the next element and continue the iteration
until all the elements have been added

-[é University at Buffalo The state University of New York

Sorting

n

A
51 1 3||i||£ :

I|| alfs] n

If the array has n elements
=>Running time: O(n?)

-[ﬁ University at Buffalo The state University of New York

Different Sorting Strategy

* Selection Sort

* Bubble Sort

* Recursive Bubble Sort
* Insertion Sort

* Etc.

Recursive Insertion Sort
Merge Sort

Bitonic Sort

Quick Sort

-[é University at Buffalo The state University of New York

Quicksort

* QuickSort is a Divide and Conquer algorithm.

* |t picks an element as pivot and partitions the given array around the picked pivot. There are
different way of quicksort that pick pivot in different ways.

Always pick the first element as pivot.
Always pick the last element as pivot.
Pick a random element as pivot.

Pick median as pivot.

-[é University at Buffalo The state University of New York

Quicksort Algorithm Design

* Divide: Partition the array A[p..r] into two subarrays A[p..g—1] and A[g+1..r].
»Each element in A[p..g-1] < A[q]
»A[q] < each element in A[g+1..r-1]
»Index q is computed as part of the partitioning procedure

-[é University at Buffalo The State University of New York

Partitioning in Quicksort

X: pivot
r: length of array

Partition(A, p, r):
X, i =A[r],p-1;
forj;=ptor—1do

Alp..1] Alp..q - 1] Alg+1..r-1] if A[j] < x then
< o ™ — =1+ 1;
L] P] ‘ Partition ‘ | P Alil <> A[]
Y/ I Ali + 1] > AlT];
pivot <P > P returni+ 1
P
N - LN - v
numbers less pivot numbers greater than or
than p equal to p 2.

-[é University at Buffalo The state University of New York

QuickSort Algorithm Design

* Divide: Partition the array A[p..r] into two subarrays A[p..g—1] and A[g+1..r].
»Each element in A[p..g-1] < A[q]
»A[q] < each element in A[g+1..r-1]
»Index q is computed as part of the partitioning procedure

* Conquer: Sort the two subarrays by recursive calls to quicksort

-[é University at Buffalo The state University of New York

Recursive call Quicksort Quicksort(A, p, r):
if p <rthen
: : _ q := Partition(A, p, r);
QuickSort A[left...right]: Quicksort(A, p. q - 1);
1. if left < right: Quicksort(A, q + 1, r)
1. Partition A[left...right] such that: //pivot = A[q]

all Af[left...g-1] elements are less than A[q],
all A[g+1...right] elements are >= A[(q]

2. Quicksort Alleft...g-1]

3. Quicksort A[g+1...right]

2. Terminate

-[é University at Buffalo The state University of New York

QuickSort Algorithm Design

* Divide: Partition the array A[p..r] into two subarrays A[p..g—1] and A[g+1..r].
»Each element in A[p..g-1] < A[q]
»A[q] < each element in A[g+1..r-1]
»Index q is computed as part of the partitioning procedure

* Conquer: Sort the two subarrays by recursive calls to quicksort

* Combine: The subarrays are sorted in place, no work is needed to combine them

Q\

~
A
Y
~
~
\\
13 .« A
//, \‘

-[é University at Buffalo The state University of New York

Quicksort

* QuickSort is a Divide and Conquer algorithm.

* |t picks an element as pivot and partitions the given array around the picked pivot. There are
different way of quicksort that pick pivot in different ways.

Always pick the first element as pivot.
Always pick the last element as pivot
Pick a random element as pivot.

Pick median as pivot.

-[é University at Buffalo The State University of New York

Quicksort Pseudocode

A[B: r]

s)
T[] [5] m

LYJ

pivot

Partition

Quicksort(A, p, r):
if p <rthen
q := Partition(A, p, r);
Quicksort(A, p, g —1);
Quicksort(A, g+ 1, r)

Alp..q—1] Alq] Alg+1..r]

) | |
5
\) H_/
<3 >5

Partition(A, p, r):
X, 1 =A[r],p-1;
forj.=ptor—1do
if A[j] < xthen

=1+ 1;
Ali] < A[j]

Ali + 1] < A[r];

returni+ 1

X: pivot
r: length of array

~
~
Y
Y
~
\\
15 -~ A
/’, b

-[é University at Buffalo The state University of New York

Example
Initially:

Iteration:

P r
25839417106

J

25839417106

)

25839417106
)

25839417106
)

25389417106
)

pivot (x) =6

Partition(A, p, r):
X, i =A[r],p-1;
forj:=ptor—1do
if A[j] < xthen

=i+ 1;
Ali]l & A[j]

Al + 1] & Ar];

returni+ 1

~
Y
Y
~
\\
16~ A
/’, b

-[é University at Buffalo The state University of New York

Example

After final swap
Next oteratopm:

Final:

538

5CI’>.8
.
s
534
534
534
534

234

I
78

10 6

10 6

10 6

9 10

Partition(A, p, r):
X, i =A[r],p-1;
forj:=ptor—1do
if A[j] < xthen

=i+ 1;
Ali]l & A[j]

Al + 1] & Ar];

returni+ 1

~
~
Y
Y
~
\\
17 -« A
/’, b

-[é University at Buffalo The state University of New York

Quicksort Running time

® Quicksort is usually O(nign)

° Worst case: if the array is sorted to begin with, the running time will be O(n2)
Array is already sorted in the same order.
Array is already sorted in reverse order.

All elements are the same

-[é University at Buffalo The State University of New York

Partitioning in Quicksort

A[rir] Alp..q — 1] A[g+1..r-1]
\/ N P\\ ‘ Partition ‘ | P| |
pivot <P > P

- S

Y . YT
numbers less pivot numbers greater than or
than p equal to p

-[é University at Buffalo The State University of New York

Parallel quicksort

numbers less than p pijvot numbers greater than or equal to p
A
- - N f—L\/ N
p quicksort\
' Send the partition to another nod‘lv
quicksort

' ' ' ' Number of layers depend
on how many nodes
quicksort

~
~
~
~

Sorted array AN

-[ﬁ University at Buffalo The state University of New York

Results

Single node
(ms) Different size data
1600
1400
1200
1000
800
600
400
200 /
0 Q== ®
1 5 4 8 16 32 (core)

== 10" =@=10"2 =@u==10"3 e=@u=0") o=@ue|0"5 o=@ue{0'C ==gm=0"7

-[é University at Buffalo The state University of New York

Results

(ms) 1 core
130

120
110
100
90
80

70

16

32

64

128

(core)

-[é University at Buffalo The state University of New York

Results

(ms) 8 nodes
130

120
110

100

90

80

70

16

(core)

16 nodes

.[é University at Buffalo The state University of New York

Results

(ms)

130

120

110

100

90

80

70

1 2 4 8

8 and 16 nodes compare

—

® (core)

10 Nn0des e==8 nodes

1 2 4 8 16
120.3148 92.78802 95.00372 95.9435 93.82286
85.76758 91.6233 92.7243 93.58568 93.80679

-[é University at Buffalo The state University of New York

Thank you

-[é University at Buffalo The State University of New York

Reference

Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr. Laurence Boxer)

Python Program for QuickSort — GeeksforGeeks

Sorting Algorithms — GeeksforGeeks

MPI for Python — MPI for Python 3.1.3 documentation (mpi4py.readthedocs.io)

https://www.geeksforgeeks.org/python-program-for-quicksort/
https://www.geeksforgeeks.org/sorting-algorithms/#:%7E:text=A%20Sorting%20Algorithm%20is%20used,order%20of%20their%20ASCII%20values.
https://mpi4py.readthedocs.io/en/stable/

	Parallel Quicksort
	Sorting Algorithm
	Sorting
	Sorting
	Sorting
	Sorting
	Different Sorting Strategy
	Quicksort
	Quicksort Algorithm Design
	Partitioning in Quicksort
	QuickSort Algorithm Design
	Recursive call Quicksort
	QuickSort Algorithm Design
	Quicksort
	Quicksort Pseudocode
	Example
	Example
	Quicksort Running time
	Slide Number 19
	Parallel quicksort
	Results
	Results
	Results
	Results
	Slide Number 25
	Reference

