Parallel Bitonic Sort

David Jegan Abishek

Instructor - Dr. Russ Miller

CSE 702 Programming Massively Parallel Systems
November 21

-[é University at Buffalo The state University of New York



.[é University at Buffalo The state University of New York

Agenda

* Introduction to Bitonic Sort
- Example Comparison
* Results and Analysis

* Future Work
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What is Bitonic Sort?

e Bitonic Sequence:

How to make a given sequence Bitonic?

A sequence a = (a1, a2, . . ., ap) of p numbers is said to be
bitonic if and only if /\
cal<az2s<..<akz=...2ap, forsome k,1<k < p, or

cal=2a2=z..2ak<=...<ap, forsome k,1<k < p, or \/

* ‘a’ can be split into two parts that can be interchanged to give

either of the first two cases. /\/



-[é University at Buffalo The state University of New York

How to make a sequence Bitonic?

Stages

Steps
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Bitonic Sorting

To sort an unordered sequence, sequences are merged into larger bitonic sequences,
starting with pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of adjacent numbers formed into increasing
sequences and decreasing sequences.

Pairs form a bitonic sequence of twice the size of each original sequences.
By repeating this process, bitonic sequences of larger and larger lengths obtained.

In the final step, a single bitonic sequence sorted into a single increasing sequence.
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Bitonic Sorting
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What happens in a comparison?

sends{2,3,6,7}>min j
max=7 ¢

2,3,6,7 Sorted 1,4.5,8 Sortec
min=1
sends {1,4,5}<max=7
) “{7-7 “ P ‘i' | ’
elements and keeps elements and keeps
the lowest half the highest half
1,2,3,4 5,6,7,8
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Algorithm

* Input: Number of processors, Data length

* Find the ranks of each processor

* Generate data in each processor using randomize function
e Sort the lists generated in the processor

 Compare and exchange data with a neighbor

* The above steps use comparison functions to compare and exchange



Runtime
When (P=n)

i=logn

Tbttomc _ Zl _ lOg n(logn+ 1) _ O(IOgZ n)

When (P << n)

T bitonic: %(logN +log’ P)

par
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Running it!

#!/bin/sh

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=1
#SBATCH --constraint=IB .
#SBATCH --partition=general-compute --gqos=general-compute Currently Loaded Modules:

#SBATCH --time=12:00:00 1) intel/14.0 2) intel-mpi/4.1.3
#SBATCH --mail-type=END

#SBATCH --mail-user=davidjeg@buffalo.edu

#SBATCH --output=bitonic_sort.out

#SBATCH --job-name=bitonic_sort

mogtﬁe ioag intei/M-O Number of Processes spawned: 2
module load intel-mpi/4.1.3 &

T le oot . Time Elapsed (Sec): 0.169214
mpicc -Im -o bitonic_sort bitonic_sort.c All done!

ulimit -s unlimited
export I_MPI_PMI_LIBRARY=/usr/1ib64/1libpmi.so
srun bitonic_sort 3355

#
echo "All done!"
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Results

Keeping the number of processors constant and
increasing the datasize.

Number of processors = 2

Datasize vs Runtime(s)

== Execution Time (s)

2500000 5000000 7500000 10000000 12500000 15000000

Data size

1,000,000

2,000,000

4,000,000

8,000,000

16,000,000

Execution Time (s)

0.169214

0.350628

0.749664

1.841554

3.344101
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Results

Keeping the data size constant and
increasing the number of processors.

Data size = 16 Million (16,000,000)

No of Processors vs Execution time(s)

== Execution Time (s)

No of Processors

16

32

64

Execution Time (s)

5.038071
3.191084
2115728
2.002834
1.569341
1.003489

0.790844
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Results

Keeping the number of processors equal to
the data and analyzing the execution time.

Data size = Number of processors

No of Processors vs Runtime(sec)

== Runtime (s)

10 20 30 40 50 60

No of Processors

16

32

64

Execution Time (s)

0.000078
0.000118
0.000274
0.000291
0.000311

0.000354
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Results

Keeping the data per processor constant as
number of processors increase and analyzing

the execution time.

Increasing Data size and Processor count

== Problem scale

No of Processors | Data size Execution
Time (s)
2 2000000 0.350628
4 4000000 0.510892
8 8000000 1.034621
16 16000000 1.362129
32 32000000 1.540692
64 64000000 2.218754
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Future Work

* Compare MPI (distributed memory models) with OpenMP (shared memory models)

* Compare with other sort algorithms
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Thank you!
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