Parallel Bitonic Sort

David Jegan Abishek

Instructor - Dr. Russ Miller

CSE 702 Programming Massively Parallel Systems
November 21

-[é University at Buffalo The state University of New York

.[é University at Buffalo The state University of New York

Agenda

* Introduction to Bitonic Sort
- Example Comparison
* Results and Analysis

* Future Work

-[é University at Buffalo The state University of New York

What is Bitonic Sort?

e Bitonic Sequence:

How to make a given sequence Bitonic?

A sequence a = (a1, a2, . . ., ap) of p numbers is said to be
bitonic if and only if /\
cal<az2s<..<akz=...2ap, forsome k,1<k < p, or

cal=2a2=z..2ak<=...<ap, forsome k,1<k < p, or \/

* ‘a’ can be split into two parts that can be interchanged to give

either of the first two cases. /\/

-[é University at Buffalo The state University of New York

How to make a sequence Bitonic?

Stages

Steps

s
4
g &

= N OO 00N B

= NN OoONPAEOONW
~NOoo bW

N
anl

-(

3

N ONOTO 2N W

\X/¢\>(/

ONOO OB WN -

-[é University at Buffalo The state University of New York

Bitonic Sorting

To sort an unordered sequence, sequences are merged into larger bitonic sequences,
starting with pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of adjacent numbers formed into increasing
sequences and decreasing sequences.

Pairs form a bitonic sequence of twice the size of each original sequences.
By repeating this process, bitonic sequences of larger and larger lengths obtained.

In the final step, a single bitonic sequence sorted into a single increasing sequence.

-[é University at Buffalo The state University of New York

Bitonic Sorting

Step No. Processor No.
000 001 010 011 100 101 110 111
1 L H H L L H H L

L]

=

t_,2|

-

oo

en

es
E

=

3 L — H L H H L H L
[% 1 l
4 L L L L H H H H
T]] ‘
|
5 L L H H L L H H

-[é University at Buffalo The state University of New York

What happens in a comparison?

sends{2,3,6,7}>min j
max=7 ¢

2,3,6,7 Sorted 1,4.5,8 Sortec
min=1
sends {1,4,5}<max=7
) “{7-7 “ P ‘i' | ’
elements and keeps elements and keeps
the lowest half the highest half
1,2,3,4 5,6,7,8

-[é University at Buffalo The state University of New York

Algorithm

* Input: Number of processors, Data length

* Find the ranks of each processor

* Generate data in each processor using randomize function
e Sort the lists generated in the processor

 Compare and exchange data with a neighbor

* The above steps use comparison functions to compare and exchange

Runtime
When (P=n)

i=logn

Tbttomc _ Zl _ lOg n(logn+ 1) _ O(IOgZ n)

When (P << n)

T bitonic: %(logN +log’ P)

par

.[é University at Buffalo The state University of New York

Running it!

#!/bin/sh

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=1
#SBATCH --constraint=IB .
#SBATCH --partition=general-compute --gqos=general-compute Currently Loaded Modules:

#SBATCH --time=12:00:00 1) intel/14.0 2) intel-mpi/4.1.3
#SBATCH --mail-type=END

#SBATCH --mail-user=davidjeg@buffalo.edu

#SBATCH --output=bitonic_sort.out

#SBATCH --job-name=bitonic_sort

mogtﬁe ioag intei/M-O Number of Processes spawned: 2
module load intel-mpi/4.1.3 &

T le oot . Time Elapsed (Sec): 0.169214
mpicc -Im -o bitonic_sort bitonic_sort.c All done!

ulimit -s unlimited
export I_MPI_PMI_LIBRARY=/usr/1ib64/1libpmi.so
srun bitonic_sort 3355

#
echo "All done!"

.[é University at Buffalo The state University of New York

Results

Keeping the number of processors constant and
increasing the datasize.

Number of processors = 2

Datasize vs Runtime(s)

== Execution Time (s)

2500000 5000000 7500000 10000000 12500000 15000000

Data size

1,000,000

2,000,000

4,000,000

8,000,000

16,000,000

Execution Time (s)

0.169214

0.350628

0.749664

1.841554

3.344101

11

.[é University at Buffalo The state University of New York

Results

Keeping the data size constant and
increasing the number of processors.

Data size = 16 Million (16,000,000)

No of Processors vs Execution time(s)

== Execution Time (s)

No of Processors

16

32

64

Execution Time (s)

5.038071
3.191084
2115728
2.002834
1.569341
1.003489

0.790844

12

.[é University at Buffalo The state University of New York

Results

Keeping the number of processors equal to
the data and analyzing the execution time.

Data size = Number of processors

No of Processors vs Runtime(sec)

== Runtime (s)

10 20 30 40 50 60

No of Processors

16

32

64

Execution Time (s)

0.000078
0.000118
0.000274
0.000291
0.000311

0.000354

13

.[é University at Buffalo The state University of New York

Results

Keeping the data per processor constant as
number of processors increase and analyzing

the execution time.

Increasing Data size and Processor count

== Problem scale

No of Processors | Data size Execution
Time (s)
2 2000000 0.350628
4 4000000 0.510892
8 8000000 1.034621
16 16000000 1.362129
32 32000000 1.540692
64 64000000 2.218754

14

.[é University at Buffalo The state University of New York

Future Work

* Compare MPI (distributed memory models) with OpenMP (shared memory models)

* Compare with other sort algorithms

15

-[é University at Buffalo The state University of New York

References

* Algorithms Sequential and Parallel: A Unified Approach by Russ Miller and Laurence Boxer
* http://en.wikipedia.org/wiki/Bitonic_sorter
 CCR: Resources and Tutorial Materials

* http://www.cs.rutgers.edu/~venugopa/parallel_summer2012/bitonic_overview.html

16

.[é University at Buffalo The state University of New York

Thank you!

17

