
‘-

1

Instructor: Dr. Russ Miller
UB Distinguished Professor

By Hao Wang

702 SEMINAR
PROGRAMMING MASSIVELY
PARALLEL SYSTEMS

ODD-EVEN TRANSPOSITION SORT
USING MPI

‘-

2

• Background
• Sequential algorithm
• Parallel algorithm
• Goal to achieve
• Experiment Results
• Observation
• Reference

‘-

3

Odd–even transposition sort is a relatively simple sorting

algorithm, developed originally for use on parallel processors

with local interconnections. It is a comparison sort related

to bubble sort, with which it shares many characteristics.

• It functions by comparing all odd/even indexed pairs of

adjacent elements in the list and, if a pair is in the wrong

order (the first is larger than the second) the elements are

switched.

• The next step repeats this for even/odd indexed pairs (of

adjacent elements).

• Then it alternates between odd/even and even/odd steps

until the list is sorted.

• The total steps of odd–even transposition sort will no

more than the total number of elements.(1)

• Background

(1). https://en.wikipedia.org/wiki/Odd–even_sort

‘-

4

• Sequential algorithm

- Example: given a list of {5, 9, 4, 3}

- 1. odd phase (9, 4) à {5, 4, 9, 3}

- 2. even phase(5,4), (9, 3) à {4, 5, 3, 9}

- 3. odd phase (5, 3) à {4, 3, 5, 9}

- 4. even phase (4, 3), (5, 9) à {3, 4, 5, 9}

• Running time

- The running time is like bubblesort, is simple but not very efficient.
- O(n2)

‘-

5

Suppose we have n elements need to be sorted and p processors. Each processor should be
responsible for n/p elements.

1. Sort the local elements in each processor, use a fast sequential sorting algorithm like
quick sort.

2. Now each processor contains a local sorted elements

3. Swap processors’ elements:
1. Odd phase: swap (p[1], p[2]), (p[3], p[4]) …
2. Even phase: swap (p[0], p[1]), (p[2], p[3]) …

4. Since each processor has stored more than one elements, we let the left side processor
in the pair keep the smaller half of the elements, the right side processor in the pair keep
the larger half of the elements..

5. Keep iterating odd and even phase until all elements are sorted

• Parallel Algorithm (recap)

‘-

6

- SLURM script to run the sorting algorithm on the CCR

• SLURM script and config

‘-

7

• Use different size of array and different number of
processors to implement parallel odd-even
transposition sort to get the run time of the
algorithm.

• Make graph of the results achieved and find the
relationship between task size, number of
processors and the run time.

• Goal to achieve

‘-

8

EXPERIMENT
RESULT
Different key size
Different number of processors

‘-

9

Number of processors � 100,000 (s) 200,000 (s)

2 0.030 0.06465

4 0.0170 0.03499

8 0.0092 0.0188

16 0.0055 0.01096

32 0.0037 0.0070

64 0.0023 0.0059

‘-

10

0.03

0.017
0.0092 0.0055 0.0037 0.0018

0.06465

0.03499

0.0188

0.01096
0.007 0.0061

2 4 8 16 32 64

KeySize:100,000 KeySize:200,000

R
un

ni
ng

 ti
m

e(
s)

Number of nodes

‘-

11

Number of processors � 1,000,000 (s) 2,000,000 (s)

2 0.2864 0.5768

4 0.1571 0.3003

8 0.09425 0.17028

16 0.05493 0.10324

32 0.03490 0.06815

64 0.0278 0.04853

‘-

12

R
un

ni
ng

 ti
m

e(
s)

0.2864

0.1571
0.09425 0.05493 0.0349 0.02

0.5768

0.3003

0.17028

0.10324
0.06815 0.059

2 4 8 16 32 64

KeySize:1,000,000 KeySize:2,000,000

‘-

13

Number of
processors �

1 million
per node (s)

10 million
per node (s)

20 million
per node (s)

80 million
per node (s)

2 0.5768 7.147839 14.78549 63.7654

4 0.609313 7.445081 15.37767 66.1508

8 0.702924 7.895275 16.28316 70.1465

16 0.786155 7.91641 16.76659 68.5454

32 0.865806 9.510384 19.7052 90.932

64 1.142172 12.579163 26.4245 124.3056

Fixed keySize and scale Results

‘-

14

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64

FIXED KEY SIZE PER NODE AND SCALE RESULT

1 million 2 million

‘-

15

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64

FIXED KEY SIZE PER NODE AND SCALE RESULT

20 million 80 million

‘-

16

• The speedup is defined as the ratio of the serial runtime of the best
sequential algorithm for solving a problem to the time taken by the
parallel algorithm to solve the same problem on p processors.

Speed up

‘-

17

0

1
2
3
4
5
6
7
8
9

10

2 4 8 16 32 64

SPEED UP �KEY SIZE�100,000�
Nodes

‘-

18

• Record the difference in running time of different size of input and
different number of nodes

• Parallel solution can speed up the Odd–even transposition running time

• For the same key size, when the nodes are doubles, the time required
to sort the array decreases nearly by the factor of two. However, there
is an additional overhead because of communication time between
nodes.

• If the key size per node are fixed, while the nodes and total key size are
doubled, the running time does not be the same since there is
communication time between each nodes while in the sorting process.

• Learning how to work on the CCR

Observation and Learning

‘-

19

• http://mpitutorial.com/ MPI Tutorials

• https://ubccr.freshdesk.com/support/solutions/articles/13000026245-

tutorials-and-training-documents CCR Tutorials

• https://en.wikipedia.org/wiki/Odd%E2%80%93even_sort

Reference:

http://mpitutorial.com/
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents
https://en.wikipedia.org/wiki/Odd%E2%80%93even_sort

‘-

20

Thank you

