PARALLEL A* ALGORITHM

CSE 708 Harsahavardan Ramadas Instructor: Dr. Russ Miller

University at Buffalo The State University of New York

The Problem

Goal : To find the shortest(best) path between 2 nodes(or cells) in a connected graph(or grid)

Constraint : Cannot travel on blocked cells(wall) in the grid

The Solution – A*

- Path finding algorithm (can be seen as extension of Dijkstra's algorithm)
- Cost estimated using the function:

f(n) = g(n) + h(n)

 $g(n) \Rightarrow cost so far to reach node n$

- h(n) => estimated cost from *n* to goal.
- Heuristic function to estimate cost Manhattan, Diagonal, Euclidean

acal		g=1.4	g=1.0	anal		g=1.4	g=1.0	1
yoar		h=2.0	h=3.0	goar		h=2.0	h=3.0	
			start				start	Ľ
		g=1.4	g=1.0			g=1.4	g=1.0	1
		h=2.8	h=3.8			h=2.8	h=3.8	Ľ
								1
		g=1.4	g=1.0			g=1.4	g=1.0	Ê
goai		h=2.0	h=3.0	goai		h=2.0	h=3.0	Ľ
			start				start	P
		g=1.4	g=1.0		g=2.4	g=1.4	g=1.0	ï
		h=2.8	h=3.8		h=2.4	h=2.8	h=3.8	h
					g=2.8	g=2.4	g=2.8	L
			-		h=3.4	h=3.8	h=4.2	
goal		g=1.4	g=1.0	g=4.8 goal		g=1.4	g=1.0	
		h=2.0	h=3.0	h=0.0		h=2.0	h=3.0	L
g=3.8			start	g=3.8			start	
g=3.4	g=2.4	g=1.4	g=1.0	g=3.4	g=2.4	g=1.4	g=1.0	1
h=2.0	h=2.4	h=2.8	h=3.8	h=2.0	h=2.4	h=2.8	h=3.8	
g=3.8	g=2.8	g=2.4	g=2.8	g=3.8	g=2.8	g=2.4	g=2.8	
h=3.0	h=3.4	h=3.8	h=4.2	h=3.0	h=3.4	h=3.8	h=4.2	
g=4.8		g=1.4	g=1.0	anal				Ľ
h=0.0		h=2.0	h=3.0	goar				L
g=3.8			start				start	
g=3.4	g=2.4	g=1.4	g=1.0		\langle	1		
h=2.0	h=2.4	h=2.8	h=3.8					
g=3.8	g=2.8	g=2.4	g=2.8					1
	h 0.4	L 0.0	h 10					

Sequential Approach - Pseudo code

A* (start, goal) Closed set = the empty set 1. 2. Open set = includes start node 3. G[start] = 0, H[start] = H calc[start, goal] 4. F[start] = H[start]5. While Open set $\neq \emptyset$ 6. **do** CurNode ← EXTRACT-MIN- **F**(Open set) 7. if (CurNode == goal), then return BestPath For each Neighbor Node N of CurNode 8. If (N is in Closed set), then Nothing 9. 10. else if (N is in Open set), 11. calculate N's G, H, F 12. If (G[N on the Open set] > calculated G[N]) 13. RELAX(N, Neighbor in Open set, w) 14. N's parent=CurNode & add N to Open set 15. else, then calculate N's G, H, F N's parent = CurNode & add N to Open 16.

Parallel Approach

- Graph(size NxN) is divided into equal size sub-graphs and assigned to different processors
- For each sub-graph, there are a set of entry and exit points
- Every processor runs A* algorithm for the entry/exit points within each sub-graph based on global avg heuristic
- Processors communicate local paths(Queue) with each other
- When solution is found, broadcast and stop loop.

Parallel Approach

- Graph(size NxN) is divided into equal size sub-graphs and assigned to different processors
- For each sub-graph, there are a set of entry and exit points

Parallel Approach

- Every processor runs A* algorithm for the entry/exit points and communicate local paths(Queue) with each other
- When solution is found, broadcast and merge paths.

Number of Nodes	Time (ms)
2	22.07
4	12.07
8	10.32
16	17.49
32	26.71
64	46.54
128	78.48

Number of Nodes	Time (ms)
2	90.52
4	44.81
8	26.30
16	20.51
32	31.35
64	46.47
128	47.18

Number of Nodes	Time (ms)
2	419.01
4	273.68
8	135.51
16	51.13
32	24.28
64	23.97
128	25.41

Number of Nodes	Time (ms)
2	1797.48
4	955.69
8	518.88
16	402.51
32	316.08
64	369.35
128	484.11

Inference

- Better performance compared to sequential
- Results depend on the nature of the graph/Matrix
- Multiple methods for achieving parallelism

References

- Visuals, http://qiao.github.io/PathFinding.js/visual/
- Parallel A* Graph Search, Ariana Weinstock and Rachel Holladay, <u>https://people.csail.mit.edu/rholladay/docs/parallel_search_report.pdf</u>
- A* Algorithms, https://www.geeksforgeeks.org/a-search-algorithm/
- Parallel A* Search on Message Passing Architectures, <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=205103</u>
- A* Path finding Project,

https://arongranberg.com/astar/docs_beta/class_pathfinding_1_1_thre ading_1_1_parallel.html

Thank You!