
Exploring a GPU-Based Brute Force Attack
A look at using massively parallel programming to
perform a brute-force attack

John Rivera
Prof. Russ Miller
December 5, 2019

CSE 702 – Programming Massively Parallel Systems
SUNY The University at Buffalo

Programming the Nvidia GPU

• Nvidia GPUs use the SIMT (Single Instruction, Multiple
Threads) architecture for parallel programming.

• CUDA, a proprietary extension to the C language
developed by Nvidia, is the primary programming
language for developing parallel applications on the GPU.

• A Nvidia GPU contains a number of cores. There are two
kinds of cores: Streaming Multiprocessors (SMs) and CUDA
cores.

• SMs are special cores that dispatches threads to the CUDA
cores in an efficient manner. Each SM is responsible for a
certain number of CUDA cores.

1

Programming the Nvidia GPU Cont’d

The CCR cluster’s GPU Compute nodes feature the Nvidia Tesla
V100 GPU, a member of the Volta family of Nvidia GPUs. Some
quick facts:

Each Nvidia Tesla V100 GPU has:

• 80 Streaming Multiprocessors

• 64 CUDA cores per Streaming Multiprocessor

• 5,120 (80× 64) CUDA cores

• 1,024 threads per block

• CUDA 7.0 platform support

2

CUDA

• CUDA is a deceptively simple extension to the C
programming language.

• There are only two extensions to the base language: a
declaration of where the function can be run; the GPU
(‘kernel’), the CPU (‘host’) or both (‘global’); and special
syntax for calling ‘kernel’ functions specifying the number
of blocks and threads to run the function on.

• The most important parts of the CUDA API are functions
for transferring the contents of system memory to GPU
memory (and back) and a special struct which reveals
which block and thread a ‘kernel’ function is running on.

3

CUDA Cont’d

Blocks and threads is an important concept to understand
when programming in CUDA. It can be visualized as a grid:

Block 1 • • • • • • • • · · ·
Block 2 • • • • • • • • · · ·
Block 3 • • • • • • • • · · ·

...
...

...
...

...
...

...
...

... . . .

Figure 1: A grid in CUDA consists of blocks and threads.

4

CUDA Cont’d

The following is a simple CUDA program:

#include <stdio.h>

__global__ void hello_world() {
printf("Hello, World!");

}

int main(void) {
hello_world<<<1, 1>>>();

}

5

CUDA Cont’d

• The function marked with __global__ can be executed
on either the CPU or the GPU.

• The <<<x, y>>> syntax denotes both that the function
should be executed on the GPU, and how many threads
we want to run the function on; x denotes the number of
blocks and y denotes the block size (i.e. the number of
threads per block).

• In summary, the program executes the hello_world()
function on one (1× 1) thread on the GPU.

6

CUDA Cont’d

There are some considerations when programming in CUDA:

• The logic is more or less pure C; the programmer is
responsible for thread synchronization, memory
allocation, etc.

• Nvidia GPUs use the SIMT architecture; it works best with a
single function running on many threads.

• CUDA only allows us to work with threads; it is not
possible to ensure a 1 : 1 mapping to the cores
themselves. A CUDA program can only specify the number
of threads to run a function on, and leave it up to the SMs
to dispatch the threads to the CUDA cores as they see fit.

7

Cryptography

A deep dive into cryptography is out of the scope of this
presentation. In essence, all we really need to know are:

• For simplicity, we are using symmetrical cryptography –
that means we have the same key for both encryption and
decryption.

• The ciphertext is the plaintext, encrypted.

• Key strength is generally defined in bits; 32-bit, 128-bit, etc.

• For the project, I’m using the RC4 algorithm. Do NOT use
this in production code – vulnerabilities within the
algorithm has been discovered a long time ago. RC4 is
NOT secure, no matter how strong the key may be.

8

The Brute-Force Attack

• A brute-force attack is simple: try every possible key until
we decrypt the ciphertext.

• This is where the importance of key strength comes in
play. Say, we have a 16-bit key; we will need, in the worst
case, Θ(216) tries to crack a key. 128-bit key? Θ(2128) tries.

• Given enough time, ALL encryption algorithms are
vulnerable to a brute force attack. All of them. This is why
many algorithms add “busy work” to the decryption
algorithm.

9

The Brute-Force Attack Cont’d

To generalize, the worst-case running time for a sequential
brute force attack is:

Θ(2cn)

where c is the time taken in “busy work“ and n is the size of
the key in bits. We can see that this is an extremely
fast-growing function.

This is essentially what is keeping us secure. The idea is that
by the time a sufficiently strong key is cracked, either a) it is no
longer relevant, or b) we are all long dead.

10

Results

I am using the insecure RC4 algorithm because unlike most
algorithms, it allows for an arbitrary key size. This is useful for
my experiment, where I can run an attack on a number of
different key sizes.

Also, I am running the attack in its entirety – I do not stop
when a key is found. This eliminates a degree of randomness
in my results, to avoid a situation where the key is found
relatively early, skewing the graph.

11

Results (Sequential)

n time
4 0.3573
8 5.2981

16 1219.2634
32 78640400.8017
64 > 72 hours

10 20 30
0

2

4

6

8
·107

key size

tim
e
(in

m
ill
is
ec

on
ds

)

12

Results (Key Per Thread)

n time
4 0.1065
8 1.3209

16 12.2685
32 20413.9160
64 > 72 hours

10 20 30
0

1

2

·104

key size

tim
e
(in

m
ill
is
ec

on
ds

)

13

Results (5,120 Threads)

n time
4 0.1065
8 1.3209

16 0.3522
32 15957.7314
64 > 72 hours

10 20 30
0

0.5

1

1.5

·104

key size

tim
e
(in

m
ill
is
ec

on
ds

)

14

References

• https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

• https://devblogs.nvidia.com/
even-easier-introduction-cuda/

• https://docs.nvidia.com/cuda/
cuda-c-programming-guide/

• https://en.wikipedia.org/wiki/RC4

• https://gist.github.com/rverton/a44fc8ca67ab9ec32089

15

