
Validate
Parentheses

CSE 702 - Programming Massively Parallel Systems

Instructor - Dr. Russ Miller

Prepared by - Madhushri Patil

Agenda
● The Problem
●
● Applications
●
● Generating Parentheses dataset
●
● The Algorithm
●
● Results
●
● Observations
●
● Conclusions
●
● Challenges
●
● References

2

The Problem

Given a sequence of parentheses S, validate the sequence.

Si = <S0, S1, …… , Sn-1> where 0 <= i < n

Sequence Si is said to be valid if and only if -

● For every opening parenthesis ‘(’ there is a corresponding closing parenthesis ‘)’.
● The matched parentheses should be in the correct order, i.e., an opening

parenthesis should appear before the closing parenthesis.

Example -

(() (())) Valid Parentheses

((()) ((Invalid Parentheses
3

Applications

● Parentheses-heavy programming languages like Java, Javascript in order to ensure if
the code has correct number of parentheses.

●
● Modern text editors / Integrated Development environments (IDE) that support

highlighting the matching opening and closing parenthesis.

4

Generating Parentheses dataset
Implemented a Java program to generate parentheses for the given size n

5

The Algorithm
1. For each process, compute local parallel prefix sum as follows -

a. Assign 1 for each left parenthesis and -1 for each right parenthesis
b. Compute parallel prefix sum for the data each process has

2. Compute global parallel prefix sum for the entire data sequence across all processes

3. For every process, compute the depth/nesting for parentheses as follows -
a. Increment the value of prefix_sum[i] for every closing parenthesis ‘)’ : 0 <= i <= n

4. Once every process has final depth values, the algorithm does the following -
a. Every process computes the match for every opening parenthesis in its local subsequence as -

i. For each opening parenthesis, find its closest closing parenthesis with the same depth
ii. Mark True in match[i] against each parenthesis for which a match is found

b. Perform parallel merging and matching parentheses for the rest of the subsequences until
Process 0 has the entire sequence.

5. Process 0 returns if the given sequence is Valid / Invalid iff every match[i] = True.
6

Example

((() ()) ()) ((()))

7

Assign 1 to (and -1 to) 1 -1 -1 -1-1 -1 1 11 -1 - 1 11 1 1 -1

Local Parallel Prefix sum 1 0 -1 -2-1 -2 -1 01 0 -1 01 2 3 2

Global Parallel Prefix sum 3 2 1 0 1 0 1 23 2 1 21 2 3 2

Final Depth and local
match 3 3 2 1 2 1 1 23 3 2 21 2 3 3

Input Sequence

Final match 3 3 2 1 2 1 1 23 3 2 21 2 3 3

Results

8

Number of
Processors

Average time taken by each
Processor (seconds)

4 4.09418

8 4.28352

16 4.93446

32 4.76223

64 5.23540

128 7.60596

 Constant data per Processor
(~90K characters per Processor)

9

Number of
Processors

Average time taken by each
Processor (seconds)

4 45.60996

8 23.68024

16 12.24782

32 7.66502

64 5.43394

128 4.14124

Constant total data (~1 Million characters)
 Variable data per Processor

Results

Observations

10

Constant data per processor Variable data per processor

● Response times are seen increased in
cases where the matches found locally are
comparatively less than those found in the
other cases

●
● Cost of communication is reflected by the

increase in time with increasing number of
processors

● Significant decrease in the time required is
observed upto 32 processors

●
● Cost of communication increases after 32

processors for the data considered in this
experiment and hence the response time

Conclusions

● Increasing number of processors does not always result in better response times,
as the cost of communication increases

● Constant data per processor does not always guarantee same response time at
each processor, due to the communication involved between processors

11

Challenges

● Ran into insufficient memory errors when the input files were too big
●
● Running the script on 256 was time consuming and ran into a issues like getting

incorrect results and memory errors.

12

References

● Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr. Laurence Boxer)
●
● Christos Levcopoulos, Ola Petersson, “Matching parentheses in parallel”, Discrete Applied

Mathematics 40 (1992) 423-431

13

Thank You!

14

