

PARALLEL MATRIX MULTIPLICATION

Prepared by:

Malvika Sundaram Srinivasan 50290572

Guided by:

Professor Dr. Russ Miller

TABLE OF CONTENTS

- Matrix Multiplication Definition and Use Case
- Process
- Sequential Approach
- Parallel Approach
 - ID Decomposition
 - Cannon's algorithm
- Results
- Future work
- References

MATRIX MULTIPLICATION

- Given two matrices Matrix A of size mxn with elements a_{ij} and Matrix B of size nxp with elements b_{ik})
- Matrix C is the product of A and B with size mxp

$$c_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj},$$

or $i = 1, ..., m$ and $j = 1, ..., p$.

n

USE CASE

These are the final goals of the project

- Perform some image filters
- Perform convolution using General Matrix Multiplication(GEMM) in parallel

PROCESS

Using Open MPI to write matrix multiplication

The steps taken to run a program

- 1. Write the configurations and module loading as a shell script (SLURM)
- 2. The shell script also contains program to run
- 3. Run the script with sbatch command
- 4. Monitor the status using squeue or the jobs dashboard
- 5. Run the test for 3 times in each configuration and compute the average

MPI Program Structure

SEQUENTIAL APPROACH

ITERATIVE ALGORITHM

Complexity:

- The algorithm takes $\Theta(nmp)$ time.
- If input are square matrices of size nxn, the runtime is cubic i.e. Θ(n³)

- Input: matrices A and B
- Let C be a new matrix of the appropriate size
- For *i* from 1 to *n*:
 - For *j* from 1 to *p*:
 - Let sum = 0
 - For *k* from 1 to *m*:
 - Set sum \leftarrow sum + $A_{ik} \times B_{ki}$
 - Set $C_{ij} \leftarrow$ sum
- Return C

PARALLEL APPROACH – 1D Decomposition

- 1-D column wise decomposition
- Each task:
 - Utilizes subset of cols of A, B, C.
 - Responsible for calculating its C_{ij}
 - Requires full copy of A
 - Requires $\frac{N^2}{P}$ data from each of the other (P-1) tasks.
- # Computations: $O(N^3/P)$
- $T_{mat-mat-1D} = (P-1)\left(t_{st} + t_{wall}\frac{N^2}{P}\right)$

PARALLEL APPROACH – Cannon's Algorithm

- ✤ It is especially suitable for computers laid out in an N × N mesh.
- Storage requirements remain constant and are independent of the number of processors

Algorithm overview

When multiplying two $N \times N$ matrices A and B, we need $N \times N$ processing nodes P arranged in a 2d grid. Initially $p_{i,j}$ is responsible for $a_{i,j}$ and $b_{i,j}$.

```
row i of matrix a is circularly shifted by i elements to the left.
col j of matrix b is circularly shifted by j elements up.
Repeat n times:
    p[i][j] multiplies its two entries and adds to running total.
    circular shift each row of a 1 element left
    circular shift each col of b 1 element up
```


PARALLEL APPROACH – Cannon's Algorithm

-0

PARALLEL APPROACH – Cannon's Algorithm

- Consider two n × n matrices A(i , j) and B(i , j) partitioned into p blocks.
- $0 \le i, j \le \sqrt{p}$ and the size $(n / \sqrt{p}) \times (n / \sqrt{p})$ each.
- Process P(i, j) initially stores A(i, j) and B(i, j), computes block C(i, j) of the result matrix.
- The initial step of the algorithm regards the alignment of the matrices
 - Align the blocks of A and B in such a way that each process can independently start multiplying its local submatrices.
 - This is done by shifting all submatrices A(i, j) to the left (with wraparound) by i steps and all submatrices B(i, j) up (with wraparound) by j steps.

- *Perform local block multiplication.*
- Each block of A moves one step left and each block of B moves one step up (again with wraparound)
- Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied.

RESULTS - SEQUENTIAL

No of Processors	Matrix Size	Runtime (s)
1	100 x 100	3.39
1	1000 x 1000	11.21
1	2000 x 2000	83.24
1	3000 x 3000	372.78
1	4000 x 4000	854.39
1	5000 x 5000	2003.24

RESULTS - PARALLEL

Matrix size: 1000 x 1000

0

RESULTS - PARALLEL

Matrix size: 5000 x 5000

0

RESULTS - PARALLEL

Matrix size: 10000 x 10000

0

RESULTS – PARALLEL VS SEQUENTIAL

No of Processors in parallel = 10

-Parallel

RESULTS – SPEEDUP

Matrix size: 100 x 100

O

RESULTS – SPEEDUP

Matrix size: 5000 x 5000

0

RESULTS

1D Decomposition vs Cannon's algorithm

No of Processors	Matrix Size	Runtime (s)
1	100 x 100	3.39
4	200 x 200	1.62
1	200 x 200	8.21
4	1000 x 1000	2.341

No of Processors	Matrix Size	Runtime (s)
1	100 x 100	2.89
4	200 x 200	1.13
1	200 x 200	7.8142
4	1000 x 1000	2.1896
11	· · · · · · · · · · · · · · · · · · ·	1 1

LEARNING

- Understanding of Parallelization and writing MPI & SLURM script
- o Increasing the processors doesn't always reduce the running time
- At each stage doubling the data means quadrupling the number of processors
- o Running times depend on how the nodes get allocated on CCR cluster

FUTURE WORK

• Try to implement in OpenMP and compare the results with Apache Spark

 \cap

REFERENCES

- Parallel Multi Channel Convolution using General Matrix Multiplication : <u>https://arxiv.org/pdf/1704.04428.pdf</u>
- 2D Image Convolution using Three Parallel Programming Models on the Xeon Phi : <u>https://arxiv.org/pdf/1711.09791.pdf</u>
- https://makezine.com/2011/03/30/codebox-create-image-filters-with-matrix-multiplication/
- https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
- https://computing.llnl.gov/tutorials/mpi/#Abstract
- https://edoras.sdsu.edu/~mthomas/sp17.605/lectures/MPI-MatMatMult.pdf

