Prepared by:
Malvika Sundaram Srinivasan
50290572

Guided by:
Professor Dr. Russ Miller

TABLE OF CONTENTS

- Matrix Multiplication Definition and Use Case
- Process
- Sequential Approach
- Parallel Approach
- 1D Decomposition
- Cannon's algorithm
- Results
- Future work
- References

MATRIX MULTIPLICATION

- Given two matrices Matrix A of size mxn with elements a_{ij} and Matrix B of size nxp with elements b_{jk})
- Matrix C is the product of A and B with size mxp

$$
c_{i j}=a_{i 1} b_{1 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

for $i=1, \ldots, m$ and $j=1, \ldots, p$.

Number of Columns of $\mathrm{A}=$ Number of Rows of B

USE CASE

These are the final goals of the project

- Perform some image filters
- Perform convolution using General Matrix Multiplication(GEMM) in parallel

(A)

A Original Image \quad| Image filtered |
| :--- |
| with matrix |\(\left|\begin{array}{lll}0 \& 0 \& 0

0 \& 1 \& 0

n \& n \& 1\end{array}\right|\)

Convolution becomes addition of sub-matrices, each scaled by one element of the kernel.

PROCESS

Using Open MPI to write matrix multiplication

The steps taken to run a program

1. Write the configurations and module loading as a shell script (SLURM)
2. The shell script also contains program to run
3. Run the script with sbatch command
4. Monitor the status using squeue or the jobs dashboard
5. Run the test for 3 times in each configuration and compute the average

MPI Program Structure

MPI include file Declarations, prototypes, etc. Program Begins Do work \& make message passing calls Terminate MPI environment Parallel code ends Program Ends	```#include "mpi.h" #include <stdio.h> #include <stdlib.h> int main (int argc, char *argv[]) { int numtasks, rank, dest, source, rc, count, tag=1; char inmsg, outmsg='x'; MPI_Status Stat; MPI_Init(&argc,&argv) ; MPI_Comm_size(MPI_COMM_WORLD, &numtasks) ; MPI_Comm_rank (MPI_COMM_WORLD, &rank); if (rank == 0) { dest = 1; source = 1; rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD) ; rc = MPI_Recv(&inmsg, 1, MPI_\overline{CHAR, source, tag, MPI_COMM}\mp@subsup{]}{_}{-}WORLD, &Stat); } else if (rank == 1) { dest = 0; source = 0; rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat) ;``` ```} MPI_Finalize() ; }```

SEQUENTIAL APPROACH

ITERATIVE ALGORITHM

- Input: matrices A and B
- Let C be a new matrix of the appropriate size

Complexity:

- The algorithm takes $\Theta(n m p)$ time.
- If input are square matrices of size nxn, the runtime is cubic i.e. $\Theta\left(n^{3}\right)$
- For i from 1 to n :
- For j from 1 to p :
- Let sum $=0$
- For k from 1 to m :
- Set sum $\leftarrow \operatorname{sum}+A_{i k} \times B_{k j}$
- Set $C_{i j} \leftarrow \operatorname{sum}$
- Return C

PARALLEL APPROACH - 1D Decomposition

- 1-D column wise decomposition
- Each task:
- Utilizes subset of cols of A, B, C.
- Responsible for calculating its $C_{i j}$
- Requires full copy of A
- Requires $\frac{N^{2}}{P}$ data from each of the other $(P-1)$ tasks.
- \# Computations: $\mathcal{O}\left(N^{3} / P\right)$
- $T_{\text {mat-mat-1D }}=(P-1)\left(t_{s t}+t_{\text {wall }} \frac{N^{2}}{P}\right)$

PARALLEL APPROACH - Cannon's Algorithm

\star It is especially suitable for computers laid out in an $\mathrm{N} \times \mathrm{N}$ mesh.

* Storage requirements remain constant and are independent of the number of processors

Algorithm overview

When multiplying two $N \times N$ matrices A and B , we need $N \times N$ processing nodes P arranged in a 2 d grid. Initially $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ is responsible for $a_{i, j}$ and $b_{i, j}$.

```
row i of matrix a is circularly shifted by i elements to the left.
col j of matrix b is circularly shifted by j elements up.
Repeat n times:
    p[i][j] multiplies its two entries and adds to running total.
    circular shift each row of a 1 element left
    circular shift each col of b 1 element up
```


PARALLEL APPROACH - Cannon's Algorithm

Initial A, B

A, B after shifting
$\mathrm{k}=1$

A, B after shifting $\mathrm{k}=2$

$$
\mathrm{C}(1,2)=\mathrm{A}(1,0) * \mathrm{~B}(0,2)+\mathrm{A}(1,1) * \mathrm{~B}(1,2)+\mathrm{A}(1,2) * \mathrm{~B}(2,2)
$$

PARALLEL APPROACH - Cannon's Algorithm

- Consider two $n \times n$ matrices $A(i, j)$ and $B(i, j)$ partitioned into p blocks.
- $\quad 0 \leq i, j \leq \sqrt{p}$ and the size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Process $P(i, j)$ initially stores $A(i, j)$ and $B(i, j)$, computes block $C(i, j)$ of the result matrix.
- The initial step of the algorithm regards the alignment of the matrices
- Align the blocks of A and B in such a way that each process can independently start multiplying its local submatrices.
- This is done by shifting all submatrices $A(i, j)$ to the left (with wraparound) by i steps and all submatrices $B(i, j)$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound)
- Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied.

RESULTS - SEQUENTIAL

No of Processors	Matrix Size	Runtime (s)
1	100×100	3.39
1	1000×1000	11.21
1	2000×2000	83.24
1	3000×3000	372.78
1	4000×4000	854.39
1	5000×5000	2003.24

RESULTS - PARALLEL

Matrix size: 1000×1000

RESULTS - PARALLEL

Matrix size: 5000×5000

RESULTS - PARALLEL

Matrix size: 10000×10000

RESULTS - PARALLEL VS SEQUENNIÅL
No of Processors in parallel $=10$

RESULTS - SPEEDUP

Matrix size: 100×100

RESULTS - SPEEDUP

Matrix size: 5000×5000

RESULTS

1D Decomposition vs Cannon's algorithm

No of Processors	Matrix Size	Runtime (s)
1	100×100	3.39
4	200×200	1.62
1	200×200	8.21
4	1000×1000	2.341

No of Processors	Matrix Size	Runtime (s)	
1	100×100	2.89	\ddots
4	200×200	1.13	
1	200×200	7.8142	\ddots
4	1000×1000	2.1896	\ddots

LEARNING

- Understanding of Parallelization and writing MPI \& SLURM script
- Increasing the processors doesn't always reduce the running time
- At each stage doubling the data means quadrupling the number of processors
- Running times depend on how the nodes get allocated on CCR cluster

FUTURE WORK

- Try to implement in OpenMP and compare the results with Apache Spark

REFERENCES

* Parallel Multi Channel Convolution using General Matrix Multiplication : https://arxiv.org/pdf/1704.04428.pdf
* 2D Image Convolution using Three Parallel Programming Models on the Xeon Phi : https://arxiv.org/pdf/1711.09791.pdf
* https://makezine.com/2011/03/30/codebox-create-image-filters-with-matrix-multiplication/
* https://en.wikipedia.org/wiki/Matrix multiplication algorithm
* https://computing.IInl.gov/tutorials/mpi/\#Abstract
* https://edoras.sdsu.edu/~mthomas/sp17.605/lectures/MPI-MatMatMult.pdf

