PARALLEL MATRIX MULTIPLICATION

Mojitha Kurup
CSE 708

University at Buffalo
T五 The Graduate School

Problem Statement

Let $A=[a i j]$ and $B=[b i j]$ be $\mathrm{n} \times \mathrm{n}$ matrices. Compute $C=\mathrm{AB}$

Sequential approach of matrix multiplication

- $\theta\left(n^{\wedge} 3\right)$ time complexity
- Drastic change in run time for large size matrices
- Pseudo code:
procedure seq_matrix_multiplication (A, B, C)
Begin
for $\mathrm{i}=0$ to $\mathrm{n}-1$ do
for $\mathrm{j}=0$ to $\mathrm{n}-1 \mathrm{do}$
$C[I, j]=0$
for $\mathrm{k}=0$ to $\mathrm{n}-1$ do
$C[I, j]+=A[i . k] \times B[k, j] ;$
end for;
end seq_matrix_multiplication

Parallel approach of matrix multiplication

Cannon's Algorithm

- We partition input matrices into P square blocks (P is the number of processors available)
- Mesh of $\sqrt{ } \mathrm{p} \times \sqrt{ } \mathrm{p}$ will be created using Cartesian topology where P_{ij} store A_{ij} and Bij which will compute C ij.
- Each block will be sent to each process determined by its owner
- Wrap-around shifts will be perfomed
- Total no of steps required will be $\sqrt{ } P$
- Data per processor will be $(\mathrm{n} / \sqrt{ } \mathrm{p}) \times(\mathrm{n} / \sqrt{ } \mathrm{p})$
- Assume P to be perfect square and n as a multiple of $\sqrt{ } p$

Initial Alignment:

for $i, j:=0$ to $p-1$ do
Send block $A i, j$ to process $i, j-i+p \bmod p$ and block $B i, j$ to process $i-j+p \bmod p, j$;
endfor;
Process Pi,j multiply received submatrices together and add the result to $C i, j$;
In this step, the send operation is to: shift $A i, j$ to the left (with wraparound) by i steps and shift $B i, j$ to the up (with wraparound) by j steps.

Matrix A

Matrix B

b1 b2	b3 b4
b5 b6	b7 b8
a9 b10	b11 b12
b13 b14	b15 b16
\uparrow	\uparrow
0 up shift	1 up shift

No of processors $=4$

Shift and Compute:

for step :=1 to $p-1$ do
Shift $A i, j$ one step left (with wraparound) and $B i, j$ one step up (with wraparound);
Process Pi,j multiply received submatrices together and add the result to $C i, j$; Endfor;

世面 The Graduate School

Left shift

Repeat these steps for $\sqrt{ } p$ times

- \boldsymbol{T} University at Buffalo

五 The Graduate School

Resultant Matrix C

Execution time for Cannon's approach

	$\mathbf{5 0 0 \times 5 0 0}$	$\mathbf{1 0 0 0 \times 1 0 0 0}$	$\mathbf{2 0 0 0 \times 2 0 0 0}$	$\mathbf{4 0 0 0 \times 4 0 0 0}$	$\mathbf{5 0 0 0 \times 5 0 0 0}$
1	4	13	78.7	216	423
4	3.1	7.3	39.3	85.60	189.20
9	1.2	6.2	19.8	48.46	108.23
16	0.97	2.8	7.7	36.20	63.24
25	0.03	1.9	4.23	24.31	38.45
49	0.02	0.29	4.19	23.92	28.80
64	0.013	0.05	3.95	23.18	26.12

T- University at Buffalo
画 The Graduate School

Cannon's algorithm execution time

Observation

- Increasing number of processors did not always yield better results
- Although increasing number of processors yielded better results initially, not a huge difference was seen when with 25, 49 and 64 processors.
- Thus, for this particular problem we can conclude that (considering operational cost), 25 processors may work as well as 49 processors since the difference in run time is not significant.
- Manual experiment required to analyze right number of processors for different problems

References

https://cseweb.ucsd.edu//classes/fa12/cse260-b/Lectures/Lec13
https://people.eecs.berkeley.edu/~demmel/cs267/lecture11/lecture11.html\#link 5
Gupta, Anshul; Kumar, Vipin; , "Scalability of Parallel Algorithms for Matrix Multiplication," Parallel Processing, 1993. ICPP 1993. International Conference on , vol.3, no., pp.115-123, 16-20 Aug. 1993 doi: 10.1109/ICPP.1993.160 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=4134256 \&isnumber=4134231

