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Problem Statement

Let A = [aij] and B = [bij] be n x n matrices. Compute C = AB
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Sequential approach of matrix multiplication

®  6(n"3) time complexity
* Drastic change in run time for large size matrices

* Pseudo code:
procedure seq_matrix_multiplication (A, B, C)
Begin
fori=0ton-1do
forj=0ton-1do
Cll,j]=0
for k=0 to n-1 do
CIl, ] +=Ali. K] X B[k, JI;
end for;
end seq_matrix_multiplication
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Parallel approach of matrix multiplication

Cannon’s Algorithm

We partition input matrices into P square blocks (P is the number of processors available)

Mesh of Vp x Vp will be created using Cartesian topology where Pjj store Ajj and Bij which will
compute C ij.

Each block will be sent to each process determined by its owner
Wrap-around shifts will be perfomed

Total no of steps required will be VP

Data per processor will be (n/\p)x(n/p)

Assume P to be perfect square and n as a multiple of \p
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Initial Alignment:

fori,j:=Otop—-1do

Send block Ai,j to processi,j—i+pmodp
and block Bi,j to processi—j+pmodp,j;
endfor;

Process Pi,j multiply received submatrices together and add the result to Ci,j ;

In this step, the send operation is to: shift Ai,j to the left (with wraparound) by i steps
and shift Bi,j to the up (with wraparound) by j steps.
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No of processors = 4
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Shift and Compute:

for step:=1top —1do
Shift Ai,j one step left (with wraparound) and Bi,j one step up (with wraparound);

Process Pi,j multiply received submatrices together and add the result to Ci,;j ;
Endfor;
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) Left shift
1 left shift _
Up shift
1 up shift 1 up shift Q
Repeat these steps for Vp times
9 . X
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Resultant Matrix C
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Execution time for Cannon’s approach

- 500 x 500 1000 X 1000 | 2000 x 2000 | 4000 x 4000 | 5000 x 5000
1 4 13 78.7

216 423
4 3.1 7.3 39.3 85.60 189.20
9 1.2 6.2 19.8 48.46 108.23
16 0.97 2.8 7.7 36.20 63.24
25 0.03 1.9 4.23 24.31 38.45
49 0.02 0.29 4.19 23.92 28.80

64 0.013 0.05 3.95 23.18 26.12
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Observation

* Increasing number of processors did not always yield better results

» Although increasing number of processors yielded better results initially,
not a huge difference was seen when with 25, 49 and 64 processors.

* Thus, for this particular problem we can conclude that (considering
operational cost), 25 processors may work as well as 49 processors
since the difference in run time is not significant.

« Manual experiment required to analyze right number of processors for

different problems
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