PARALLEL MATRIX MULTIPLICATION

Mojitha Kurup CSE 708

Problem Statement

Let A = [aij] and B = [bij] be n × n matrices. Compute C = AB

 \cap

Sequential approach of matrix multiplication

- $\theta(n^3)$ time complexity
- Drastic change in run time for large size matrices
- Pseudo code:

```
procedure seq_matrix_multiplication (A, B, C)
Begin
for i=0 to n-1 do
for j=0 to n-1 do
C[I, j] = 0
for k=0 to n-1 do
C[I, j] += A[i. k] X B[k, j];
end for;
end seq_matrix_multiplication
```


Parallel approach of matrix multiplication

Cannon's Algorithm

- We partition input matrices into P square blocks (P is the number of processors available)
- Mesh of √p x √p will be created using Cartesian topology where Pij store Aij and Bij which will compute C ij.
- Each block will be sent to each process determined by its owner
- Wrap-around shifts will be perfomed
- Total no of steps required will be \sqrt{P}
- Data per processor will be $(n/\sqrt{p}) \times (n/\sqrt{p})$
- Assume P to be perfect square and n as a multiple of \sqrt{p}

Initial Alignment:

for i,j := 0 to p - 1 do

```
Send block Ai,j to process i, j - i + p \mod p
and block Bi,j to process i - j + p \mod p,j;
endfor;
```

Process Pi, j multiply received submatrices together and add the result to Ci, j;

In this step, the send operation is to: shift $A_{i,j}$ to the left (with wraparound) by *i* steps and shift $B_{i,j}$ to the up (with wraparound) by *j* steps.

6

-0

Shift and Compute:

for step :=1 to p - 1 do Shift $A_{i,j}$ one step left (with wraparound) and $B_{i,j}$ one step up (with wraparound);

Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$; Endfor;

Repeat these steps for \sqrt{p} times

0

Resultant Matrix C

-0

Execution time for Cannon's approach

	500 x 500	1000 x 1000	2000 x 2000	4000 x 4000	5000 x 5000
1	4	13	78.7	216	423
4	3.1	7.3	39.3	85.60	189.20
9	1.2	6.2	19.8	48.46	108.23
16	0.97	2.8	7.7	36.20	63.24
25	0.03	1.9	4.23	24.31	38.45
49	0.02	0.29	4.19	23.92	28.80
64	0.013	0.05	3.95	23.18	26.12

11

 \cap

Cannon's algorithm execution time

matrix size

-0

Observation

- Increasing number of processors did not always yield better results
- Although increasing number of processors yielded better results initially, not a huge difference was seen when with 25, 49 and 64 processors.
- Thus, for this particular problem we can conclude that (considering operational cost), 25 processors may work as well as 49 processors since the difference in run time is not significant.
- Manual experiment required to analyze right number of processors for different problems

References

https://cseweb.ucsd.edu//classes/fa12/cse260-b/Lectures/Lec13

https://people.eecs.berkeley.edu/~demmel/cs267/lecture11/lecture11.html#link_5

Gupta, Anshul; Kumar, Vipin; , "Scalability of Parallel Algorithms for Matrix Multiplication," Parallel Processing, 1993. ICPP 1993. International Conference on , vol.3, no., pp.115-123, 16-20 Aug. 1993 doi: 10.1109/ICPP.1993.160 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256 &isnumber=4134231

