
Parallel Sample Sort using MPI

Nicolas Barrios



Introduction to 
Sorting

Divide and conquer sorting algorithms are extremely 
prevalent throughout the field of Computer Science. 
Quicksort, Merge Sort, etc. 

They lend themselves nicely towards parallelization, 
as each subproblem can be distributed across 
processors.

However, without guarantees about the data in each 
processor, the runtimes of these algorithms 
deteriorate when encountering a disproportionate 
amount of data in some processor(s).

Sample Sort is an improved version of divide and 
conquer algorithms that addresses this 
non-uniformity. Consider it a generalization of 
Quicksort.

As the name suggests, it samples the data to more 
accurately partition the data.



How does 
Samplesort work?

Where p = # processors and k = oversampling factor:

1. Sample p (* k) elements and sort them
2. Share these samples with every processor 

(MPI_Allgather)
3. Each p select p-1 pivots aka splitters. These are 

the same across p’s.
a. Each b-th pair of splitters denotes a “bucket” that 

will be sent to the b-th processor.
4. Re-arrange local data into the buckets described 

by the pivots.
5. Send the b-th bucket to the b-th processor 

(MPI_Alltoall[v])
6. Combine buckets and sort local data.



Oversampling? The oversampling factor comes in as a way to get a 

good representation of the full dataset. A large 

oversampling factor will result in many samples from 

which to choose from. This comes at the expense of 

an increased communication cost to get those 

samples to all other processors.

Therefore, there is a diminishing return when 

increasing the oversampling factor



An Example of 
Samplesort

From: Wikipedia's Samplesort Page 

Sorry about the non-English image, but 
it’s a great visual 

https://en.wikipedia.org/wiki/Samplesort


My Implementation 
of Samplesort

Ran on CPU-Gold-6230 on CCR:

● Using [2,4,8,12,16,20,24,28,32] amount of 
cores for strong and weak scaling studies

● Using [2,4,8,12,16] amount of nodes for the 
oversampling factor study

Generate [node count *] 48 million floats total, 
ranging from [-1000,1000]

The number of splitters is exactly (node count - 1).

The sorting routine used at the processor level is a 
variation of Quicksort called Introsort implemented 
in the C++ STL. This algorithm has an O(n log n) 
runtime.

https://en.wikipedia.org/wiki/Introsort


So What’s New? ● Added higher granularity in timing the 
program

● Went from using a node’s core to using 
multiple nodes (on CPU-Gold-6230)

● Added weak scaling data analysis
● Added dimensionality to the data collection 

suite by varying oversampling factor
● Reworked calculations to use the runtime of 

nodes=2 as T1 in speedup computations
● Added correctness checking at a local and 

global scale, with respect to the nodes used.
● Reduction of unnecessary computations for 

smaller runtimes
● Decided against OpenMP usage due to use 

of C++ vectors (they are not thread-safe)



Strong Scaling 
Study

All runs done with:

● Problem Size of 48 million 
elements

● Range of elements: [-1000,1000]
● Oversampling Factor of 4



Runtimes

Node Count Avg. Runtime Stddev

2 2.566841311 1.768700598

4 1.392023328 0.7411341783

8 0.8247090096 0.3014132983

12 0.6525438199 0.1530763413

16 0.5865258697 0.1536956792

20 0.475012734 0.1209308714

24 0.4478911915 0.1177897571

28 0.3916956969 0.07176715147

32 0.3804872109 0.06831204493



Speedup

Node Count Speedup

2 1

4 1.843964292

8 3.112420601

12 3.933592247

16 4.37634799

20 5.403731579

24 5.730948408

28 6.553151672

32 6.746196028



Efficiency (aka Speedup Per Processor)

Node Count Efficiency

2 1

4 0.9219821462

8 0.7781051501

12 0.6555987079

16 0.5470434988

20 0.5403731579

24 0.477579034

28 0.4680822623

32 0.4216372517



Strong Scaling 
Study - Takeaways

● The local sorting of the processor’s respective 

data, after the program’s communication of the 

elements that belongs to the processor’s 

bucket, is the largest factor in runtime. 

Specifically, 41% to 85% of the runtime, 

depending on the number of nodes.

● Speedup and Efficiency quickly deviate from the 

ideal, showing that the implementation is not 

scalable with a larger number of nodes



Weak Scaling 
Study

All runs done with:

● Problem Size of Node Count * 48 
million elements

● Range of elements: [-1000,1000]
● Oversampling Factor of 4



Runtime

Node Count Avg. Runtime Stddev

2 5.033522489 3.246492609

4 5.161099351 3.194947562

8 5.319048151 2.413134833

12 11.98935052 3.08237621

16 9.153063332 1.859961334

20 6.082119798 2.588565381

24 6.486668047 1.936077917

28 6.693445329 2.089441154

32 6.990220293 1.733020819



Speedup

Node Count Speedup

2 1

4 0.9752810684

8 0.9463201584

12 0.4198327908

16 0.5499276369

20 0.827593447

24 0.7759796636

28 0.7520077092

32 0.7200806667



Weak Scaling Study 
- Takeaways

● The local sorting of the processor’s respective 

data, after the program’s communication of the 

elements that belongs to the processor’s 

bucket, is the largest factor in runtime. 

Specifically, 52% to 87% of the runtime, 

depending on the number of nodes.

● The outliers when using 12 and 16 nodes were 

due to a jump in MPI_Alltoallv time when 

communicating the respective elements that 

each processor was assigned. 



Oversampling 
Factor Study

All runs done with:

● Problem Size of Node Count * 48 
million elements

● Range of elements: [-1000,1000]
● Node Count of 20



Runtime

Oversampling Factor Avg. Runtime Stddev

2 6.310588357 2.819590791

4 6.016740685 2.124496965

8 6.206278933 1.430231095

12 6.121792859 1.463750261

16 6.010414586 1.459056463



Speedup

Node Count Speedup

2 1

4 1.048838347

8 1.01680708

12 1.030839903

16 1.049942274



Oversampling 
Scaling Study - 
Takeaways

● As with weak scaling, the final local sorting was 

the largest contributor to the total runtime, at 

about an average of 3.75 seconds across the 

runs.

● The data shows that varying the oversampling 

factor does not influence the pivot 

determination time, much less the total runtime 

of the program



● Sample Sort as a method of sorting across a 

cluster is powerful.

● However, it is heavily reliant the efficiency and 

robustness of the sorting mechanism that the 

processor uses at the local level.

● Using the C++ STL’s vector data structure was a 

pitfall; an implementation that used OpenMP 

would have greatly reduced runtimes and 

addressed the local sorting problem with a 

custom sorting routine present.

Conclusions



Any questions? Ask away!


