
z

Data Analysis
using MPI
CSE 702 Fall ’19
Instructor - Dr. Russ Miller

Presented by Niranjan Mirashi

z
Contents

§ What is Data Analysis?

§ Problem Definition

§ Data Collection

§ Data Cleaning and Text Processing

§ How MapReduce works

§ Word Count Algorithm in MR

§ Serial Execution

§ Word Count using MPI

§ Algorithm

§ Results

§ Observations

§ References

z
What is Data Analysis?

§ Data analysis is the process of evaluating data using analytical and
statistical tools to discover useful information and aid in decision making.

§ With so much data being generated every second, there is always some
useful information that can be extracted and used for analysis.

z
Problem Definition

§ Data collection, cleaning and text processing using multiple processors.

§ Simulation of a Spark environment using MPI.

§ Simulation of “Word count” algorithm (MapReduce).

z
Data Collection

§ Data collection using Twitter API, NYT, CommonCrawl (a public data repo).

§ Wrote a program to generate random sentences out of a given word
corpus.

§ Each processor collects data corresponding to their keyword set in parallel.

z
Data Cleaning and Text Processing

§ Data Cleaning :

§ Getting rid of html tags and links.

§ Removing non UTC-8 characters.

§ Removing punctuation marks, unnecessary spaces and twitter tags like @rt, etc.

§ Text Processing :

§ Lemmatization .

§ Stemming.

§ Removing stop words.

z
Working of MapReduce

§ Divide and Conquer.

§ Uses multiple processors.

§ Phases of MapReduce –

§ Mapping

§ Shuffling

§ Combining

§ Reducing

z
Word Count Algorithm in MapReduce

z
Serial Execution

§ Test Parameters :

§ Max data = 138 MB

§ Max number of words = 2,11,74,415

§ Serial Execution time = 402.54 s

Input Size (in MB) Time (in seconds)

4 12.47

9 26.12

18 52.6

35 102.22

70 210.33

138 402.54

z
Word Count using MPI

§ Mapping Phase – Processors emit (store) a count = 1 for each word in a
key-pair format.

§ Shuffling Phase – The processors will send the intermediate mapper output
to the reducers. But in this case, the processors act as both mappers and
reducers. So we skip this phase.

§ Combine Phase – Also known as a sub-reducing phase, where each
processor will compute total word count for it’s respective map.

§ Reduce Phase – The local counts are reduced to one global count list.

z
Algorithm

1. Scatter list of words to all processors. Each processor is responsible for collecting
data corresponding to it’s local word corpus.

2. Perform data pre-processing and cleaning tasks.

3. Map phase - Emit (Store) all words as keys and values as count = 1.

4. Combine phase - Using mapper output, combine all keys and add their
corresponding values.

5. Reduce phase – In this phase, all processors have a local word count.

1. Using Recursive Halving – One processor, in this case, P0 gets one large dictionary
with all keys and values.

2. Using MPI Gather – All processors send their local dictionaries to P0 and P0 combines
them.

z

Parallel Execution Results

z
Evaluating Amdahl’s Law

No. of Processors Time (in seconds)

2 205.1

4 107.57

8 55.28

16 28.92

32 13.44

64 7.21

128 5.4

256 5.94

Data size = 138 MB
Number of words = 2,11,74,415

z
Speed up

z
Evaluating Gustafson’s Law

No. of Processors Time (in seconds)

2 59.74

4 60.1

8 59.89

16 60.23

32 60.87

64 61.12

128 61.72

Fixed Data per Processor = 20 MB

z
Observations

§ Speedup was observed significantly up to 64 processors.

§ For the data size used, using 64 processors is optimum.

§ There was a slight increase in the processing time for 256 processors,
indicating increase in communication time.

§ When we have fixed data per processor, slight increase in running time is
observed as we increase the number of processors since the cost of
communication increases.

z
References

§ Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller,
Dr.Laurence Boxer)

§ https://netjs.blogspot.com/2018/02/word-count-mapreduce-program-in-
hadoop.html

§ https://mpi4py.readthedocs.io/en/stable/intro.html

§ https://ubccr.freshdesk.com/support/solutions

z

Thank you.

