PARALLEL TRI-DIAGONAL MATRIX SOLVER USING MPL

Final Presentation – CSE 708 – Dr. Russ Miller Paramveer Singh

University at Buffalo The State University of New York

Introduction

Many technical and scientific problems involve the solution of linear systems of equations:

QX = Y,

where Q is structured as a block tri-diagonal matrix of order n:

 $Q = \begin{bmatrix} a_1 & b_1 & 0 & \dots & 0 & 0 & 0 \\ c_2 & a_2 & b_2 & \dots & 0 & 0 & 0 \\ & & \ddots & & & \\ 0 & 0 & 0 & \dots & c_{n-1} & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & \dots & 0 & c_n & a_n \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}, \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$

University at Buffalo The State University of New York

Introduction – What is a tri-diagonal Matrix ??

A Tri-diagonal matrix is a matrix that has non zero elements on the main diagonal, the sub-diagonal and super-diagonal.

Sequential Method

The Thomas algorithm is an efficient way of solving tridiagonal matrix systems.

It involves following steps :-

1) Forward Elimination

2) Backward Substitution

Sequential Method

1) Forward Elimination

Iterate through each row in a forward elimination phase, eliminating x1, x2 xn-1. The last equation will just involve one unknown xn. The coefficients at each iteration are calculated as :-

$$a'_{i} = 0 \qquad b'_{i} = 1 \qquad c'_{1} = \frac{c_{1}}{b_{1}}$$

$$c'_{i} = \frac{c_{i}}{(b_{i} - c'_{i-1}a_{i})} \qquad y'_{1} = \frac{y_{1}}{b_{1}} \qquad y'_{i} = \frac{y_{i} - y'_{i-1}a_{i}}{(b_{i} - c'_{i-1}a_{i})}$$

Sequential Method

2) Backward Substitution

Iterate back through the matrix solving for x at each row

$$x_i + c'_i x_{i+1} = y'_i$$
 $i = 1...n - 1$

 $x_n = y'_n$ i = n

The complexity of is O(n)

Γ,		0	0	07	Г Л		г л	í.
b_1	c_1	0	0	0	$ x_1 $		y_1	
a_1	b_2	c_2	0	0	$ x_2 $		y_2	
0	$egin{array}{c} c_1 \ b_2 \ a_2 \ 0 \ 0 \end{array}$	b_3	c_3	0	$ x_3 $	=	y_3	
0	0	a_3	b_4	c_4	x_4		y_4	
0	0	0	a_4	b_5	$\lfloor x_5 \rfloor$		y_5	

Let us consider the system of equations $3x_1 - x_2 + 0x_3 = -1$ $-x_1 + 3x_2 - x_3 = 7$ $0x_1 - x_2 + 3x_3 = 7$

Matrix form is

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 7 \end{bmatrix}$$

• Row 1

$$3x_l - x_2 = -1$$

Divide the Equation by a_1 , in this case $a_1 = 3$

$$\Rightarrow x_1 - \frac{1}{3}x_2 = \frac{-1}{3}$$

Assuming the coefficient of x_2 as γ_1 and the remaining constants as ρ_1 . Now the equations converts to,

$$\Rightarrow x_1 + \gamma_1 x_2 = \rho_1$$

• Row 2

Multiplying a_2 (-1) in Row 1 and eliminating x_1 Row 2

Row 2	$-x_1 + 3x_2 - x_3 = 7$
$a_2 \ge Row 1$	$-x_1 - \gamma_1 x_2 - 0 x_3 = -\rho_1$
Subtracting	$x_2(3+\gamma_1) - x_3 = 7 + \rho_1$

 $x_{2}(3 + \gamma_{1}) - x_{3} = 7 + \rho_{1}$ Divide by $(3 + \gamma_{1})$, Equation becomes $x_{2} + \gamma_{2}x_{3} = \rho_{2}$ $\gamma_{2} = \frac{-1}{3 + \gamma_{1}} = 0.375$ $\rho_{2} = \frac{7 + \rho_{1}}{3 + \gamma_{1}} = 2.5$

• Row 3

Multiplying a_3 (-1) in Row 1 and eliminating x_2 Row 3

Row 3	$-x_2 + 3x_3 = 7$
a_3 x Row 2	$-x_2 - \gamma_2 x_3 = -\rho_1$
Subtracting	$(3+\gamma_2)x_3 = 7+\rho_2$

$$x_3 = \frac{7 + \rho_2}{3 + \gamma_2} \Rightarrow \rho_3$$

$$7 + \rho_3$$

$$\rho_3 = \frac{\gamma + \rho_2}{3 + \gamma_2} = 3.619 \Rightarrow x_3 = 3.619$$

9

STAGE II -> Backward Substitution

$$\begin{bmatrix} 1 & \gamma_{1} & 0 \\ 0 & 1 & \gamma_{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} \rho_{1} \\ \rho_{2} \\ \rho_{3} \end{bmatrix}$$

Row 2:
$$\begin{aligned} x_{2} + \gamma_{2}x_{3} = \rho_{2} \\ x_{2} = \rho_{2} - \gamma_{2}x_{3} \end{bmatrix} \begin{pmatrix} Substituting \\ \rho_{2} = 2.5 \\ \gamma_{2} = -0.375 \end{pmatrix} x_{2} = 3.85$$

STAGE II -> Backward Substitution

$$\begin{bmatrix} 1 & \gamma_1 & 0 \\ 0 & 1 & \gamma_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}$$

Row 1:
$$\begin{array}{c} x_1 + \gamma_1 x_2 = \rho_1 \\ x_1 = \rho_1 - \gamma_1 x_2 \end{bmatrix} \begin{array}{c} Substituting \\ \rho_1 = -0.333 \\ \gamma_1 = -0.333 \end{bmatrix} \quad x_1 = 0.952$$

Pseudo Code -

Input : matrix size: N, Vectors a[], b[], c[] representing the sub-diagonal, main-Diagonal and super-Diagonal of the matrix A and the forcing vector d[] here i = 0, 1, ..., N - 1**Output:** row vector d[i] here i = 0, 1, 2, ..., N - 1

$$\begin{array}{c} d_0^* \longleftarrow d_0 \ / \ b_0 \\ c_0^* \longleftarrow c_0 \ / \ b_0 \\ \textbf{for } i = 1, 2...N - 1 \ \textbf{do} \\ & \left| \begin{array}{c} r \longleftarrow 1 \ / \ (b_i - a_i c_{i-1}) \\ d_i^* \longleftarrow r(d_i - a_i d_{i-1}) \\ c_i^* \longleftarrow rc_i \\ \textbf{end} \\ \textbf{for } i = (N-2)...1 \ \textbf{do} \\ & \left| \begin{array}{c} d_i \longleftarrow d_i^* - c_i^* d_{i+1} \\ \textbf{end} \end{array} \right. \end{array} \right. \end{array}$$

b_1	c_1	0	0	0]	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$		y_1	
a_1	b_2	c_2	0	0	x_2		y_2	
0	a_2	b_3	c_3	0	x_3	=	y_3	
0	0	a_3	b_4	c_4	x_4		y_4	
0	0	0	a_4	b_5	$\lfloor x_5 \rfloor$		y_5	

source: wikipedia

Given a tri-diagonal system of equations of a given size N. We divide this system among P cores such that each core stores a system of size m (m = N/P).

	c_1 b_2 a_3	$egin{array}{c} c_2 \ b_3 \ a_4 \end{array}$	c_3 b_4 a_5	$egin{array}{c_4} b_5 \ a_6 \end{array}$	$egin{array}{c} c_5 \ b_6 \ a_7 \end{array}$	$egin{array}{c} c_6 \ b_7 \ a_8 \end{array}$	c_7 b_8 a_9	c_8 b_9 a_{10}	$c_9\ b_{10}\ a_{11}$	$c_{10}\ b_{11}$	<i>c</i> ₁₁	$\left(egin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10} \ u_{11} \end{array} ight)$	=	$\left(egin{array}{c} d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7 \ d_8 \ d_9 \ d_{10} \ d_{11} \end{array} ight)$
									a_{11}	$b_{11}\ a_{12}$	$\begin{pmatrix} c_{11} \\ b_{12} \end{pmatrix}$	$\left(egin{array}{c} u_{11} \ u_{12} \end{array} ight)$		$\left(egin{array}{c} d_{11} \ d_{12} \end{array} ight)$

 $0 \le j \le P - 1.$

Step 1 –

This step takes place at a particular core j such that $0 \le j \le P - 1$ $d_1^* \longleftarrow d_1 / b_1; c_1^* \longleftarrow c_1 / b_1; a_1^* \longleftarrow a_1 / b_1$ $d_2^* \longleftarrow d_2 / b_2; c_2^* \longleftarrow c_2 / b_2; a_2^* \longleftarrow a_2 / b_2$ for i = 3...m do $\begin{vmatrix} r \longleftarrow 1 / (b_i - a_i c_{i-1}) \\ d_i \longleftarrow r(d_i - a_i d_{i-1}) \\ c_i \longleftarrow rc_i \\ a_i \longleftarrow -r(a_i a_{i-1}) \end{vmatrix}$ end for i = (m - 2)...2 do $\begin{vmatrix} d_i \longleftarrow d_i - c_i d_{i+1} \\ c_i \longleftarrow -c_i c_{i+1} \\ a_i \longleftarrow a_i - c_i a_{i+1} \end{vmatrix}$ end $d_1 \longleftarrow r(d_i - a_i d_{i-1}); c_1 \longleftarrow -rc_1 c_2; a_1 \longleftarrow ra_1$

$egin{array}{ccc} & {f 1} & & \ a_2^* & & \ a_3^* & & \ {f a}_4^* & & \ \end{array}$	1	1	$egin{array}{ccc} {f c}_1^* \ {c}_2^* \ {c}_3^* \end{array}$									$\left(egin{array}{c} \mathbf{u_1} \ u_2 \ u_3 \end{array} ight)$		$egin{pmatrix} \mathbf{d}_1^* \ d_2^* \ d_3^* \ \mathbf{d}_4^* \ \end{pmatrix}$
a³		-	1	\mathbf{c}_4^*								\mathbf{u}_{4}		\mathbf{d}_{4}^{*}
4			\mathbf{a}_5^*	1			C [*]					<u>u</u> 5		$\frac{-4}{d_{5}^{*}}$
			5		1		${f c_5^* \over c_6^* \over c_7^*}$					u_6		$egin{array}{c} \mathbf{d}_5^* \ d_6^* \ d_7^* \end{array}$
				a_6^st a_7^st		1	c_7^*					u_7	=	d_7^*
				\mathbf{a}_8^*			1	c_8^*				$\mathbf{u_8}$		\mathbf{d}_{8}^{*}
							\mathbf{a}_{9}^{*}	1			\mathbf{c}_{9}^{*}	\mathbf{u}_{9}		d_9^*
								a_{10}^{*}	1		c_{10}^*	u_{10}		d^*_{10}
								a_{11}^*		1	$egin{array}{c} {f c_{9}} \\ {c_{10}} \\ {c_{11}}^* \\ {f 1} \end{array}$	u_{11}		$egin{array}{c} \mathbf{d_9^*} \\ d_{10}^* \\ d_{11}^* \\ \mathbf{d_{12}^*} \end{array} \end{pmatrix}$
								$egin{array}{c c} a_{10}^{*} \\ a_{11}^{*} \\ \mathbf{a}_{12}^{*} \end{array}$			1 /	$\left< \mathbf{u}_{12} \right>$		$\left(\begin{array}{c} \mathbf{d_{12}^*} \end{array} \right)$

Step 2 – Forward Communication:

Collect coefficients a_i , b_i , c_i and d_i for i = 1 and m from each core

Step 3 – Solving the reduced system :

Obtain The solution for the reduced system with the help of the Thomas Algorithm

Step 4 – Backward Communication:

Distribute the solution of the reduced system, d_i for i = 1 and m back to each core

Step 5 – Update the other solutions:

for i = 2...m - 1 do $\mid d_i \longleftarrow d_i - a_i d_1 - c_i d_m$ end

Summary:-

1. Every core transforms the partitioned sub-matrices in the tridiagonal systems of equations into the modified forms.

 Construct a reduced tridiagonal system of equations by collecting the first and last row of every modified sub-matrix, using MPI_Gather

3. The reduced tridiagonal system constructed in step 2 is solved using the Thomas Algorithm.

4. The solutions of reduced tridiagonal systems in Step 3 are distributed to each core, using MPI_Scatter

5. Finally, we solve for the remaining unknowns of the modified sub-matrices (Step 1) by using the solutions obtained in Steps 3 and 4.

Results: The average of time(in seconds) recorded for four runs

N*N(size)	Serial	Procs=2	Procs==4	Procs=8	Procs=16	Procs=24	Procs=32	Procs=48
500	0.00242	0.000204	0.000129	0.000113	0.000137	0.000169	0.000551	0.000315
1000	0.003194	0.000602	0.00034	0.000208	0.000191	0.000229	0.000304	0.000411
2000	0.005477	0.002355	0.001223	0.000703	0.000525	0.001181	0.000602	0.000838
4000	0.0186	0.009305	0.004789	0.00255	0.001605	0.001484	0.001471	0.001763
8000	0.075866	0.037791	0.019273	0.010203	0.006001	0.004951	0.004636	0.004818
16000	0.303937	0.152449	0.077777	0.039812	0.022207	0.017308	0.015984	0.015659
32000	1.24737	0.608305	0.30757	0.156505	0.08398	0.062848	0.054981	0.050052
64000	5.00169	2.49914	1.2428	0.621809	0.325638	0.235615	0.197465	0.173918
128000	19.889	9.90813	5.00563	2.5091	1.30736	0.92513	0.752134	0.644724

Future Work -

- Calculate Efficiency and Speedup
- Explore more ways to solve Tri-diagonal System

Reference -

- Algorithms Sequential and Parallel: A Unified Approach by Russ Miller, Laurence Boxer
- Stefan Bondeli, Divide and conquer: a parallel algorithm for the solution of a tridiagonal linear system of equations, Parallel Computing, Volume 17, Issues 4–5, 1991
- L. Brugnano, A parallel solver for tridiagonal linear systems for distributed memory parallel computers, Parallel Computing, Volume 17, Issue 9, 1991
- Implementation of a Parallel Tridiagonal Solver for Linear system of Equations arising in Physicell-BioFVM, by Shardool Kulkarni
- Parallel Numerical Algorithms Chapter 9 Band and Tridiagonal Systems, Michael T. Heath University of Illinois.

Thank You !!!