# PARALLEL TRIDIAGONAL MATRIX SOLVER USING 

Final Presentation -
CSE 708 - Dr. Russ Miller
Paramveer Singh

## Introduction

Many technical and scientific problems involve the solution of linear systems of equations:

$$
Q X=Y,
$$

where $Q$ is structured as a block tri-diagonal matrix of order n :

$$
Q=\left[\begin{array}{ccccccc}
a_{1} & b_{1} & 0 & \ldots & 0 & 0 & 0 \\
c_{2} & a_{2} & b_{2} & \ldots & 0 & 0 & 0 \\
& & & \ddots & & & \\
0 & 0 & 0 & \ldots & c_{n-1} & a_{n-1} & b_{n-1} \\
0 & 0 & 0 & \ldots & 0 & c_{n} & a_{n}
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right], \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

## Introduction - What is a tri-diagonal Matrix ??

A Tri-diagonal matrix is a matrix that has non zero elements on the main diagonal, the sub-diagonal and super-diagonal.

$$
\left[\begin{array}{cccc}
a_{1} & b_{1} & 0 & 0 \\
c_{2} & a_{2} & b_{2} & 0 \\
0 & c_{3} & a_{3} & b_{3} \\
0 & 0 & c_{4} & a_{4}
\end{array}\right] \longmapsto\left[\begin{array}{cccc}
1 & 4 & 0 & 0 \\
3 & 4 & 1 & 0 \\
0 & 2 & 3 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

## Sequential Method

The Thomas algorithm is an efficient way of solving tridiagonal matrix systems.

It involves following steps :-

1) Forward Elimination
2) Backward Substitution

## Sequential Method

1) Forward Elimination

Iterate through each row in a forward elimination phase, eliminating $\mathrm{x} 1, \mathrm{x} 2 \ldots \mathrm{xn}-1$. The last equation will just involve one unknown xn . The coefficients at each iteration are calculated as :-

$$
\begin{array}{ccc}
a \prime_{i}=0 & b \jmath_{i}=1 & c \iota_{1}=\frac{c_{1}}{b_{1}} \\
c_{i}=\frac{c_{i}}{\left(b_{i}-c \prime_{i-1} a_{i}\right)} & y_{1}=\frac{y_{1}}{b_{1}} & y^{\prime}=\frac{y_{i}-y_{i-1} a_{i}}{\left(b_{i}-c \prime_{i-1} a_{i}\right)}
\end{array}
$$

$$
\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & 0 & 0 \\
a_{1} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{2} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{3} & b_{4} & c_{4} \\
0 & 0 & 0 & a_{4} & b_{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
$$

## Sequential Method

2) Backward Substitution

Iterate back through the matrix solving for x at each row

$$
\begin{array}{rl}
x_{i}+c \prime_{i} x_{i+1}=y \prime_{i} & i=1 \ldots n-1 \\
x_{n}=y_{n} & i=n
\end{array}
$$

$$
\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & 0 & 0 \\
a_{1} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{2} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{3} & b_{4} & c_{4} \\
0 & 0 & 0 & a_{4} & b_{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
$$

The complexity of is $\mathrm{O}(\mathrm{n})$

## Simple Example

## Let us consider the system of equations

$$
\begin{gathered}
3 x_{1}-x_{2}+0 x_{3}=-1 \\
-x_{1}+3 x_{2}-x_{3}=7 \\
0 x_{1}-x_{2}+3 x_{3}=7
\end{gathered}
$$

Matrix form is

$$
\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
7 \\
7
\end{array}\right]
$$

- Row 1

$$
3 x_{l}-x_{2}=-1
$$

Divide the Equation by $a_{1}$, in this case $a_{1}=3$

$$
\Rightarrow x_{1}-\frac{1}{3} x_{2}=\frac{-1}{3}
$$

Assuming the coefficient of $x_{2}$ as $\gamma_{1}$ and the remaining constants as $\rho_{1}$. Now the equations converts to,

$$
\Rightarrow x_{1}+\gamma_{1} x_{2}=\rho_{1}
$$

University at Buffalo The State University of New York

## Simple Example

- Row 2

Multiplying $a_{2}(-1)$ in Row 1 and eliminating $x_{1}$ Row 2

| Row 2 | $-x_{1}+3 x_{2}-x_{3}=7$ |
| :--- | :---: |
| $a_{2} \times$ Row 1 | $-x_{1}-\gamma_{1} x_{2}-0 x_{3}=-\rho_{1}$ |
| Subtracting | $x_{2}\left(3+\gamma_{1}\right)-x_{3}=7+\rho_{1}$ |
|  | $x_{2}\left(3+\gamma_{1}\right)-x_{3}=7+\rho_{1}$ <br> Divide by $\left(3+\gamma_{1}\right)$, |

Equation becomes $\boldsymbol{x}_{\mathbf{2}}+\boldsymbol{\gamma}_{\mathbf{2}} \boldsymbol{x}_{\mathbf{3}}=\boldsymbol{\rho}_{\mathbf{2}}$

$$
\boldsymbol{\gamma}_{2}=\frac{-1}{3+\gamma_{1}}=0.375 \quad \boldsymbol{\rho}_{2}=\frac{7+\rho_{1}}{3+\gamma_{1}}=2.5
$$

## Simple Example

- Row 3

Multiplying $a_{3}(-1)$ in Row 1 and eliminating $x_{2}$ Row 3

| Row 3 | $-x_{2}+3 x_{3}=7$ |
| :--- | ---: |
| $a_{3} \times$ Row 2 | $-x_{2}-\gamma_{2} x_{3}=-\rho_{1}$ |
| Subtracting | $\left(3+\gamma_{2}\right) x_{3}=7+\rho_{2}$ |
|  | $x_{3}=\frac{7+\rho_{2}}{3+\gamma_{2}} \Rightarrow \rho_{3}$ |

$$
\boldsymbol{\rho}_{3}=\frac{7+\rho_{2}}{3+\gamma_{2}}=3.619 \Rightarrow x_{3}=3.619
$$

## Simple Example

STAGE II -> Backward Substitution

$$
\left[\begin{array}{ccc}
1 & \gamma_{1} & 0 \\
0 & 1 & \gamma_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right]
$$

Row 2:

$$
\begin{array}{c|c|c}
x_{2}+\gamma_{2} x_{3}=\rho_{2} & \rho_{2}=2.5 & x_{2}=3.857 \\
x_{2}=\rho_{2}-\gamma_{2} x_{3} & \gamma_{2}=-0.375 &
\end{array}
$$

## Simple Example

## STAGE II -> Backward Substitution

$$
\left[\begin{array}{ccc}
1 & \gamma_{1} & 0 \\
0 & 1 & \gamma_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right]
$$

Row 1:

$$
\begin{array}{c|c|c}
x_{1}+\gamma_{1} x_{2}=\rho_{1} & \rho_{1}=-0.333 & x_{1}=0.952 \\
x_{1}=\rho_{1}-\gamma_{1} x_{2} & \gamma_{1}=-0.333 &
\end{array}
$$

University at Buffalo The State University of New York

## Pseudo Code -

Input : matrix size: N, Vectors $a[], b[], c[]$ representing the sub-diagonal, main-Diagonal and super-Diagonal of the matrix A and the forcing vector $d[]$ here $i=0,1, \ldots, N-1$
Output: row vector $d[i]$ here $i=0,1,2, \ldots, N-1$

$$
\begin{aligned}
& d_{0}^{*} \longleftarrow d_{0} / b_{0} \\
& c_{0}^{*} \longleftarrow c_{0} / b_{0} \\
& \text { for } i=1,2 \ldots N-1 \text { do } \\
& \quad r \longleftarrow 1 /\left(b_{i}-a_{i} c_{i-1}\right) \\
& \quad d_{i}^{*} \longleftarrow r\left(d_{i}-a_{i} d_{i-1}\right) \\
& c_{i}^{*} \longleftarrow r c_{i} \\
& \text { end } \\
& \text { for } i=(N-2) \ldots 1 \text { do } \\
& \mid \quad d_{i} \longleftarrow d_{i}^{*}-c_{i}^{*} d_{i+1} \\
& \text { end }
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & 0 & 0 \\
a_{1} & b_{2} & c_{2} & 0 & 0 \\
0 & a_{2} & b_{3} & c_{3} & 0 \\
0 & 0 & a_{3} & b_{4} & c_{4} \\
0 & 0 & 0 & a_{4} & b_{5}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]
$$

## source: wikipedia

## Parallel Method

Given a tri-diagonal system of equations of a given size N. We divide this system among $P$ cores such that each core stores a system of size m ( $m=N / P$ ).


## Parallel Method

## Step 1 -

This step takes place at a particular core $j$ such that $0 \leq j \leq P-1$

```
\(d_{1}^{*} \longleftarrow d_{1} / b_{1} ; c_{1}^{*} \longleftarrow c_{1} / b_{1} ; a_{1}^{*} \longleftarrow a_{1} / b_{1}\)
\(d_{2}^{*} \longleftarrow d_{2} / b_{2} ; c_{2}^{*} \longleftarrow c_{2} / b_{2} ; a_{2}^{*} \longleftarrow a_{2} / b_{2}\)
for \(i=3 \ldots m\) do
    \(r \longleftarrow 1 /\left(b_{i}-a_{i} c_{i-1}\right)\)
    \(d_{i} \longleftarrow r\left(d_{i}-a_{i} d_{i-1)}\right.\)
    \(c_{i} \longleftarrow r c_{i}\)
    \(a_{i} \longleftarrow-r\left(a_{i} a_{i-1}\right)\)
end
for \(i=(m-2) \ldots 2\) do
    \(d_{i} \longleftarrow d_{i}-c_{i} d_{i+1}\)
    \(c_{i} \longleftarrow-c_{i} c_{i+1}\)
    \(a_{i} \longleftarrow a_{i}-c_{i} a_{i+1}\)
end
```

$d_{1} \longleftarrow r\left(d_{i}-a_{i} d_{i-1}\right) ; c_{1} \longleftarrow-r c_{1} c_{2} ; a_{1} \longleftarrow r a_{1}$


## Parallel Method

## Step 2 - Forward Communication:

Collect coefficients $a_{i}, b_{i}, c_{i}$ and $d_{i}$ for $i=1$ and $m$ from each core

Step 3 - Solving the reduced system :
Obtain The solution for the reduced system with the help of the Thomas Algorithm


University at Buffalo The State University of New York

## Parallel Method

## Step 4 - Backward Communication:

Distribute the solution of the reduced system, $d_{i}$ for $i=1$ and
$m$ back to each core

Step 5 - Update the other solutions:

$$
\begin{aligned}
& \text { for } i=2 \ldots m-1 \text { do } \\
& \mid \quad d_{i} \longleftarrow d_{i}-a_{i} d_{1}-c_{i} d_{m} \\
& \text { end }
\end{aligned}
$$

$\left(\begin{array}{cccccc}1 & c_{1}^{* j-1} & & & & \\ a_{4}^{* j-1} & 1 & c_{4}^{* j-1} & & & \\ \hline & a_{1}^{* j} & 1 & c_{1}^{* j} & & \\ & & a_{4}^{* j} & 1 & c_{4}^{* j} & \\ \hline & & & a_{1}^{* j+1} & 1 & c_{1}^{* j+1}\end{array}\right)\left(\begin{array}{c}u_{1}^{j-1} \\ u_{4}^{j-1} \\ \hline u_{1}^{j} \\ \frac{u_{4}^{j}}{u_{1}^{j+1}} \\ u_{4}^{j+1}\end{array}\right)=\left(\begin{array}{c}d_{1}^{* j-1} \\ d_{4}^{* j-1} \\ \hline d_{1}^{* j} \\ \frac{d_{4}^{* j}}{} \\ \hline d_{1}^{j+1} \\ d_{4}^{* j+1}\end{array}\right)$

## Parallel Method

## Summary:-

1. Every core transforms the partitioned sub-matrices in the tridiagonal systems of equations into the modified forms.
2. Construct a reduced tridiagonal system of equations by collecting the first and last row of every modified sub-matrix,using MPI_Gather
3. The reduced tridiagonal system constructed in step 2 is solved
 using the Thomas Algorithm.
4. The solutions of reduced tridiagonal systems in Step 3 are distributed to each core, using MPI_Scatter
5. Finally, we solve for the remaining unknowns of the modified sub-matrices (Step 1) by using the solutions obtained in Steps 3
and 4 .

## ReSultS: The average of time(in seconds) recorded for four runs

| N*N(size) | Serial | Procs=2 | Procs==4 | Procs=8 | Procs=16 | Procs=24 | Procs=32 | Procs=48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500 | 0.00242 | 0.000204 | 0.000129 | 0.000113 | 0.000137 | 0.000169 | 0.000551 | 0.000315 |
| 1000 | 0.003194 | 0.000602 | 0.00034 | 0.000208 | 0.000191 | 0.000229 | 0.000304 | 0.000411 |
| 2000 | 0.005477 | 0.002355 | 0.001223 | 0.000703 | 0.000525 | 0.001181 | 0.000602 | 0.000838 |
| 4000 | 0.0186 | 0.009305 | 0.004789 | 0.00255 | 0.001605 | 0.001484 | 0.001471 | 0.001763 |
| 8000 | 0.075866 | 0.037791 | 0.019273 | 0.010203 | 0.006001 | 0.004951 | 0.004636 | 0.004818 |
| 16000 | 0.303937 | 0.152449 | 0.077777 | 0.039812 | 0.022207 | 0.017308 | 0.015984 | 0.015659 |
| 32000 | 1.24737 | 0.608305 | 0.30757 | 0.156505 | 0.08398 | 0.062848 | 0.054981 | 0.050052 |
| 64000 | 5.00169 | 2.49914 | 1.2428 | 0.621809 | 0.325638 | 0.235615 | 0.197465 | 0.173918 |
| 128000 | 19.889 | 9.90813 | 5.00563 | 2.5091 | 1.30736 | 0.92513 | 0.752134 | 0.644724 |

## Graph

Parallel Run TIme vs Number of Cores


## Graph

Parallel Run Time vs No. of Cores



## Graph

Parallel Run Time vs No. of Cores



## Future Work -

- Calculate Efficiency and Speedup
- Explore more ways to solve Tri-diagonal System


## Reference -

- Algorithms Sequential and Parallel: A Unified Approach by Russ Miller, Laurence Boxer
- Stefan Bondeli, Divide and conquer: a parallel algorithm for the solution of a tridiagonal linear system of equations, Parallel Computing, Volume 17, Issues 4-5, 1991
- L. Brugnano, A parallel solver for tridiagonal linear systems for distributed memory parallel computers, Parallel Computing, Volume 17, Issue 9, 1991
- Implementation of a Parallel Tridiagonal Solver for Linear system of Equations arising in Physicell-BioFVM, by Shardool Kulkarni
- Parallel Numerical Algorithms - Chapter 9 - Band and Tridiagonal Systems, Michael T. Heath University of Illinois.


## Thank You !!!

