Parallel Matrix Multiplication

Presented By: Prasad Shirvandkar

CSE 708

University at Buffalo The State University of New Vork

Problem Statement

- Given two matrices of with matrix A being size $m \times n$ and another matrix B being of $n \mathbf{x k}$
- Return Product matrix C with size $m \times k$ i.e. $A \times B$

$$
\begin{gathered}
C=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\ldots \ldots \ldots+A_{i n} B_{n j}=\sum_{m=1}^{n} A_{i k} B_{k j} \\
\text { where } \mathrm{i}=1 \ldots \mathrm{~m}, \mathrm{j}=1 \ldots \mathrm{k}
\end{gathered}
$$

- Applications:
- Image processing/filtering operations
- Encryption

- Machine Learning operations, etc.

Sequential Approach

- Simple algorithm of Iterating over each matrices 3 times

```
for i from 1 to m:
    for j from 1 to n:
        // Iterating over rows/columns for
        // addition of product in grid[i][j]
        sum := 0
        for p from 1 to k:
            sum <- sum + (A[i][p] * B[p][j])
        C[i][j] = sum
```

return C

- Expensive operation. Takes $O\left(n^{3}\right)$

- Not suitable for large matrices
$O(A * B * C)$

Sequential Approach 2

- Strassen Algorithm - Divide and Conquer Approach
- Divide matrix into 4 sub-matrices of $\mathrm{n} / 2$ dimensions recursively
- Calculate product using formulas
- Limitations:
- Matrix Size: nxn
- n power of 2

$$
\begin{array}{lr}
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], & B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
P_{1}=A_{11} \cdot\left(B_{12}-B_{22}\right) & P_{5}+P_{4}-P_{2}+P_{6}=C_{11} \\
P_{2}=\left(A_{11}+A_{12}\right) \cdot B_{22} & P_{1}+P_{2}=C_{12} \\
P_{3}=\left(A_{21}+A_{22}\right) \cdot B_{11} & P_{3}+P_{4}=C_{21} \\
P_{4}=A_{22} \cdot\left(B_{21}-B_{11}\right) & P_{5}+P_{1}-P_{3}-P_{7}=C_{22} \\
P_{5}=\left(A_{11}+A_{22}\right) \cdot\left(B_{11}+B_{22}\right) & \\
P_{6}=\left(A_{12}-A_{22}\right) \cdot\left(B_{21}+B_{22}\right) & \\
P_{7}=\left(A_{11}-A_{21}\right) \cdot\left(B_{11}+B_{12}\right) &
\end{array}
$$

Runtime: O($\left.n^{2.80}\right)$

University at Buffalo The State University of New York

Parallel Approach

- Based on SUMMA algorithm
- Distributed data across processors with p being $\sqrt{ } \mathrm{p}$ and matrix size $\mathrm{n} \times \mathrm{n}$
- Process of row K broadcasts matrix A row to the i-th row
- Process of column K broadcasts matrix B column to the j-th colum
- Perform matrix multiplication over small set of data locally on each processor

$$
\begin{aligned}
& \text { for } k:=0 \text { to } n-1 \\
& \quad C[:,:]+=A[:, k] \cdot B[k,]
\end{aligned}
$$

Example

```
# Initial Data Distribution
P(i,j) contains A(i,j) and B(i,j)
for k <- 0 to \sqrt{ p:}{}
    for i <- 0 to \sqrt{}{}p:
        P(i, k) broadcasts A(i,k) to i-th row
        for j <- 0 to \sqrt{ }{p}:
        P(k, j) broadcasts B(k,j) to j-th column
        P(i,j) computes C(i,j) <- C(i,j) + [A(i,k) * B(k,j)]
end
```


Matrix B

Example

Step 1:

Step 2 Broadcast A(i,k) i.e. P2 block in this case

Processor 1		Processor 2	
$\underline{3}$	2	1	1
$\underline{3}$	2	1	1
1	2	3	1
1	2	3	1
Processor 3			

	Processor 1		Processor 2	
Broadcast B(k,j) i.e. P3 block in this case	$\underline{1}$	$\underline{2}$	3	1
1	2	3	1	
1	$\underline{2}$	3	1	
1	2	3	1	
Processor 3		Processor 4		

Repeat above for ' p ' times

Example

Step 4: No broadcasts since p/2 iterations are done

Example

$P(0,0)$		$P(0,1)$	
1			

Loop K=1

$$
\begin{array}{|l|l|}
\hline 2 & 0 \\
\hline 2 & 0 \\
\hline
\end{array}
$$

Matrix A outer
rows

Similar to above Loop $\mathrm{K}=2$. Processor [0,1] broadcasts along row i in A and Processor $[1,0$] broadcasts along column i in B

Results (Runtime)

Results (Runtime)

Runtime - 1200×1200 Matrix Size

Runtime - 2400×2400 Matrix Size

Results (Runtime)

Runtime - 7200×7200 Matrix Size

Results (Runtime)

Results (Speedup)

Results (Distributed Comparison)

Results (Distributed Comparison)

Results (Distributed Comparison)

Results (Distributed Comparison)

Results (Memory)

- Comparing memory utilization of Summa vs Cannon's Algorithm
- Summa uses broadcast of blocks vs Cannon's circular shift

Takeaways

- The higher number of distributed nodes, the more the effect is on program runtime and speedup.
- Understanding of MPI Communicators and Carts for processor grids.
- Learned a lot about processor communication.

References

- http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
- https://dl.acm.org/doi/10.5555/899248
- https://cs.iupui.edu/~fgsong/LearnHPC/summa/index.html
- http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Matrix\ Mult iplication\%20by\%20Nur.pdf
- https://cseweb.ucsd.edu/classes/sp11/cse262-a/Lectures/262-pres1-hal.pdf

Thank You

