PARALLEL MATRIX MULTIPLICATION

Presented by: Prithvisagar Rao

Problem Statement

Given a matrix $A(n x n)$ and a matrix $B(n x n)$, the matrix C resulting from the operation of multiplication of matrices A and B, $C=A \times B$ is given as:

$$
c_{i, j}=\sum_{k=1}^{n} a_{i k} \times b_{k j}
$$

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
b_{4} & b_{5} & b_{6} \\
b_{7} & b_{8} & b_{9}
\end{array}\right]=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
c_{4} & c_{5} & c_{6} \\
c_{7} & c_{8} & c_{9}
\end{array}\right]
$$

To calculate one value in matrix C we need to perform n multiplications and $n-1$ additions. For a matrix of size n^{2} this results in n^{3} calculations.

Sequential Algorithm

```
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
    c[i][j] = 0;
    for (k=0; k<n; k++) {
        c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

As we can see, the sequential algorithm has 3 nested for loops which results in a $\mathrm{O}\left(n^{3}\right)$ time complexity.
\}
\}

Parallel Algorithm

Parallel Algorithm for Matrix Multiplication

1. Partition A and B into P square blocks $A_{i, j}$ and $B_{i, j}$ where P is the number of processors available.
2. Ensure each process can maintain a block of A and B by creating a matrix of processes of size $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$
3. The blocks are multiplied together and the results are added to the partial results in the C sub-blocks.
4. The sub-blocks of A are shifted one step to the left and the sub-blocks of B are shifted one step up.
5. Repeat this process for $\mathrm{P}^{1 / 2}$ times

Parallel Algorithm

Divide the initial input matrix into P sub blocks and distribute the data to their processes

A_{1} A_{2} A_{5} A_{6}	A_{3} A_{4} A_{7} A_{8}
A_{9} A_{10} A_{13} A_{14}	A_{11} A_{12} A_{15} A_{16} B_{5} B_{6}
Input matrix A	B_{3} B_{4} B_{7} B_{8}
B_{9} B_{10} B_{13} B_{14}	B_{11} B_{12} B_{15} B_{16}
Input matrix B	

Parallel Algorithm

The processors perform the local multiplication based on the initial arrangement

Parallel Algorithm

Shift matrix A to the left and matrix B upwards, perform the local multiplication and add it to the partial result

Parallel Algorithm

Add the partial answers

Results

Parameters used for running the parallel approach:

- Square matrices were used
- Matrix dimensions ranged from 2000 to 8000
- Number of processors used - 4,9,16,25,36,49,64

Parallel Approach

Size of Matrices

Chart Title

Observations

- Computation running time decreased as a result of parallelization.
- Increase in number of processors does not necessarily result in reduction in running time due to communication overhead.
- A good balance between number of processors and runtime was observed at 25 number of processors.
- Number of processors must be perfect squares.
- Data must be equally distributed among the processors.
- Got a good idea of parallelization.

Future work

- Ran the simple block matrix multiplication in parallel. Other algorithms such as Block-striped algorithm and Fox's algorithm can be run and compared.
- Compare results with OpenMP implementation.

Thank you

