
PARALLEL 
MATRIX 
MULTIPLICATION

Presented by: Prithvisagar Rao



Problem Statement

Given a matrix A(nxn) and a matrix B(nxn), the matrix C resulting 

from the operation of multiplication of matrices A and B, 

C = A x B is given as:

2



3

To calculate one value in matrix C we need to perform n

multiplications and n-1 additions. For a matrix of size 𝑛2 this 

results in 𝑛3 calculations.



Sequential Algorithm

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

c[i][j] = 0;

for (k=0; k<n; k++) {

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

} 4

As we can see, the sequential 

algorithm has 3 nested for loops which 

results in a O(𝑛3) time complexity.



Parallel Algorithm

Parallel Algorithm for Matrix Multiplication

1. Partition 𝐴 and 𝐵 into P square blocks 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 where P is the number of processors 

available.

2. Ensure each process can maintain a block of A and B by creating a matrix of processes of 

size P1/2 x P1/2

3. The blocks are multiplied together and the results are added to the partial results in the C 

sub-blocks.

4. The sub-blocks of A are shifted one step to the left and the sub-blocks of B are shifted one 

step up.

5. Repeat this process for P1/2 times

5



Parallel Algorithm

6

Input matrix A
Input matrix B

Divide the initial input matrix into P sub blocks and distribute the data to their processes



Parallel Algorithm

7

The processors perform the local multiplication based on the initial 

arrangement



Parallel Algorithm

8

Shift matrix A to the left and matrix B upwards, perform the local multiplication and 

add it to the partial result



Parallel Algorithm

9

Add the partial answers



Results

Parameters used for running the parallel approach:

• Square matrices were used

• Matrix dimensions ranged from 2000 to 8000

• Number of processors used – 4,9,16,25,36,49,64

10



Parallel Approach

11

2000 3000 4000 5000 6000 7000 8000

4 7.963 36.769 97.568 269.82 394.163 779.479 1221.523

9 4.913 19.459 62.256 192.071 233.235 405.353 859.578

16 2.302 12.235 24.653 75.427 113.422 226.991 264.74

25 1.426 6.147 15.657 33.853 57.588 94.843 175.485

36 3.016 10.388 29.480 54.572 59.495 101.63 158.162

49 4.167 12.547 38.996 60.971 63.689 91.627 133.747

64 5.753 16.764 46.504 67.842 69.689 89.785 115.621

Size of Matrices

N
o
 o

f 
P

ro
c
e
s
s
o
rs



12

0

200

400

600

800

1000

1200

2k 3k 4k 5k 6k 7k 8k

Chart Title

4 9 16 25 36 49 64



Observations

• Computation running time decreased as a result of parallelization.

• Increase in number of processors does not necessarily result in reduction in running time due to 

communication overhead.

• A good balance between number of processors and runtime was observed at 25 number of 

processors.

• Number of processors must be perfect squares.

• Data must be equally distributed among the processors.

• Got a good idea of parallelization.

13



Future work

• Ran the simple block matrix multiplication in parallel. Other algorithms such 

as Block-striped algorithm and Fox’s algorithm can be run and compared.

• Compare results with OpenMP implementation.

14



Thank you


