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Introduction to 0-1 Knapsack Problem

Introduction to 0-1 Knapsack Problem

● Problem of combinatorial optimization
● A set of items with a weight and a value 

given a knapsack with a maximum weight 
it can carry

Find which items to take to get the best value 
but not exceed the knapsack capacity
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Example of Knapsack Problem
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Sequential Implementation
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Sequential Implementation Example
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MPI Parallel Implementation

We do column parallelization
● Compute the maximum value achievable using the 

item of the row
● Compute the value without the new item. This value is 

the value just above in the matrix or 0 if it is the first 
item.

● Save in the cell the maximum value achievable using 
or not the new item

● Send to all the processors that could need it in future 
iteration the new value.  
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CUDA Parallel Implementation

Anti-Diagonal Approach
● We Iterating through the dynamic programming 

scoring grid in an anti diagonal process. 
● Each dotted line represents an iteration that is 

processed in parallel.
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CUDA Parallel Implementation

● As a cell being filled satisfies the dependencies of 
future cells, it allows the elements of a diagonal 
iteration of the current grid, to be calculated and filled 
in parallel.

● An example of a cell in the current grid only having 
data dependencies to the previous iterations.
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Output Analysis for W(100000/10000)
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Output Analysis for W(500000/10000
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MPI vs Cuda for W(500000/10000)



Conclusion

• As the thread count increases per block the code executing becomes faster.

• Cuda is a shared memory paradigm, which makes the algorithm easy and 

faster. MPI is a distributed memory and all synchronization and communication 
are explicit.
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Thanks You
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