
Solving 0-1 KNAPSACK
PROBLEM USING CUDA
Platform
CSE 708 Seminar: Programming Massively
Parallel Systems

Instructor: Professor Russ Miller

Author: Pushkar Pandey

CONTENT:
Introduction to 0-1 Knapsack Problem

0-1 Knapsack Problem Example

Sequential Implementation

Parallel Implementation: MPI

CUDA Implementation

Output Analysis and Graphs

MPI vs Cuda

Conclusion

References

3

Introduction to 0-1 Knapsack Problem

Introduction to 0-1 Knapsack Problem

● Problem of combinatorial optimization
● A set of items with a weight and a value

given a knapsack with a maximum weight
it can carry

Find which items to take to get the best value
but not exceed the knapsack capacity

4

Example of Knapsack Problem

5

Sequential Implementation

6

Sequential Implementation Example

7

MPI Parallel Implementation

We do column parallelization
● Compute the maximum value achievable using the

item of the row
● Compute the value without the new item. This value is

the value just above in the matrix or 0 if it is the first
item.

● Save in the cell the maximum value achievable using
or not the new item

● Send to all the processors that could need it in future
iteration the new value.

8

CUDA Parallel Implementation

Anti-Diagonal Approach
● We Iterating through the dynamic programming

scoring grid in an anti diagonal process.
● Each dotted line represents an iteration that is

processed in parallel.

9

CUDA Parallel Implementation

● As a cell being filled satisfies the dependencies of
future cells, it allows the elements of a diagonal
iteration of the current grid, to be calculated and filled
in parallel.

● An example of a cell in the current grid only having
data dependencies to the previous iterations.

10

Output Analysis for W(100000/10000)

11

Output Analysis for W(500000/10000

12

MPI vs Cuda for W(500000/10000)

Conclusion

• As the thread count increases per block the code executing becomes faster.

• Cuda is a shared memory paradigm, which makes the algorithm easy and

faster. MPI is a distributed memory and all synchronization and communication
are explicit.

13

14

References:

● https://en.wikipedia.org/wiki/Knapsack_problem
● https://developer.nvidia.com/cuda-toolkit
● https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
● https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

https://en.wikipedia.org/wiki/Knapsack_problem
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

Thanks You

15

