
MST using KRUSKAL’s
Algorithm
Final presentation

SAI KIRAN MUNDRA
CSE 708 - Programming Massively
Parallel Systems
Instructor - Dr. Russ Miller

Minimum Spanning Tree
• A spanning tree is a subset of the edges of the graph that

forms a acyclic tree where every node of the graph is a part
of the tree.

• MST is

- a spanning tree

- Total weight of edges is minimum

2

Minimum Spanning Tree

• Number of vertices in graph and MST are same.

• Number of edges = V-1 where V is number of vertices

• Need not be unique, multiple MST are possible depending on
input.

• Neither disconnected nor cyclic.

3

Algorithms for MST

• Kruskal’s algorithm

• Prim’s algorithm

• Boruvka’s algorithm

4

Kruskal’s algorithm

1. Sort all the edges in the non-decreasing order of their
weights.

2. Select the smallest edge.

3. Check if the selected edge forms a cycle with the MST
formed so far

4. Include the edge if no cycle is formed, else discard it.

5. Repeat steps from 2 to 5 till V-1 edges are included in the
MST.

5

Approach for Parallelization

• The data’s spread across multiple processors.

• Every processor Pi sort the edges that are contained in it’s
partition Vi - parallely

• Every processor Pi finds the local MST using the edges in it’s
partition

- Some edges are eliminated in this step across all
processors

6

Approach for Parallelization

• Processes merge their local MST’s (or MSF’s). Merging is
performed in the following manner. Let a and b denote two
processes which are to merge their local trees (or forests),
and let Fa and Fb denote their respective set of local MST
edges. Process a sends set Fa to b, which forms a new local
MST (or MSF) from Fa U Fb.

• Merging continues until only one process remains. Its MST is
the end result.

7

Approach for Parallelization

• To create the new local MSF during merge step, we perform
Kruskal’s algorithm again on Fa U Fb.

• It can be shown that our approach is efficient for p = O(n/log
n) number of processors.

8

Communication b/w processors

• Communication between processors happen during the
merging the local MSTs into new local MSTs.

• Processor A sends its local MST to Processor B and
Processor B calculates the new local MST using A’s Local
MST and B’s local MST.

9

Implementation in MPI

● I have used MPI to implement the parallel Kruskal
Algorithm

Results

10k vertices - 5% density -2.5M edges

Process
ors

Time Speed up

1 0.432887

2 0.381065
1.135992547

4 0.224477
1.928424738

8 0.150779
2.871003256

16 0.081652
5.301609269

32 0.042923
8.877874333

64 0.04546
8

4.937032638

10k vertices - 5% density -2.5M edges

10k vertices - 10 M edges

10k vertices - 40M edges

Observations

● Parallel Kruskal performs well on large data.

● The inflection point/ dip is shifting rightwards as we
increase the amount of data we are operating with.

References
● Loncar-TET-Springer.pdf (scl.rs)

● Kruskal’s Minimum Spanning Tree (MST) Algorithm - GeeksforGeeks

http://www.scl.rs/papers/Loncar-TET-Springer.pdf
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

Thank you

