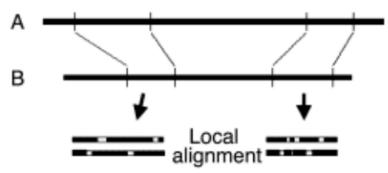
SMITH-WATERMAN ALGORITHM

Sai Ram Gurram CSE 708 (Dr. Russ Miller)

University at Buffalo The State University of New York

Table of Contents


- Introduction
- Applications
- Smith Waterman Algorithm with an example
- Need for Parallelization
- Results

Smith-Waterman Algorithm

- The Smith-Waterman algorithm is a well-known method used in bioinformatics for local sequence alignment; that is, for aligning subsequences of proteins or nucleic acids.
- The Smith-Waterman algorithm is a dynamic programming algorithm used for local sequence alignment.
- It compares segments of all possible lengths and optimizes the measure of similarity.
- The goal is to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences

SMITH WATERMAN

		т	G	т	т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
т	0	3	1	6	4	2	0	1	4
т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
Α	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
т	0	3	1	5	4	6	11	10	8
Α	0	1	0	3	2	7	9	8	7

NEEDLEMAN–WUNSCH

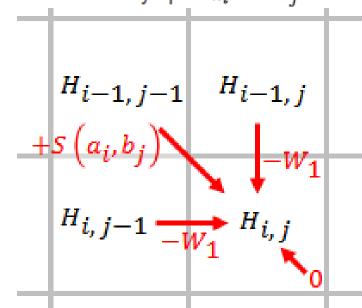
		G	С	Α	т	G	с	G
	0	-1	-2	-3	-4	-5	-6	-7
G	-1	1	- 0	1 -	2	3	4	5
A	-2	0	0	1	- 0 -	⊢ -1 ∢	2	3
т	-3	-1	-1	0	2	- 1 -	- 0 -	1
т	-4	-2	-2	-1	1	1	- 0	1
A	-5	-3	-3	-1	0	0	0	1
с	-6	-4	-2	-2	-1	-1	1	- 0
A	-7	-5	-3	-1	2	-2	0	0

4

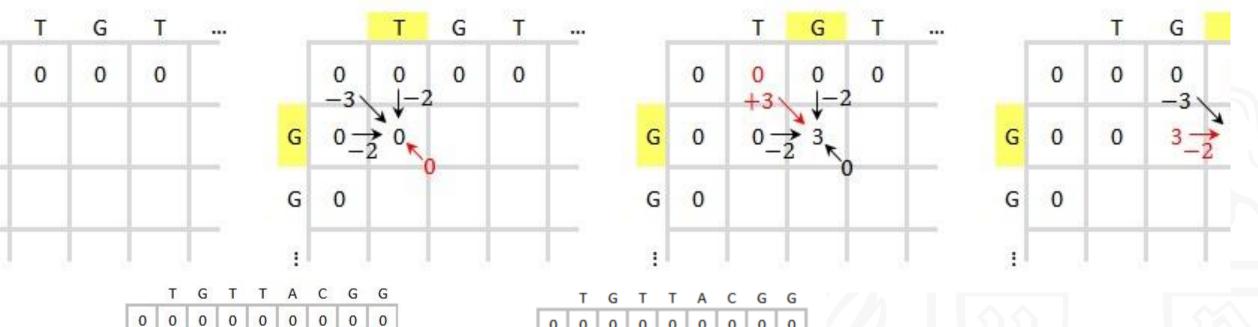
University at Buffalo The State University of New York

Algorithm

- Consider the maximum value from 4 cases
- Apply Gap penalty to top and left
- Match/Mismatch score to the diagonal value
- Set the score to zero if it negative


Match/Mismatch: +3/-3

Gap penalty: -2


$$H_{ij} = \max egin{cases} H_{i-1,j-1} + s(a_i,b_j), \ \max_{k\geq 1} \{H_{i-k,j} - W_k\}, \ \max_{l\geq 1} \{H_{i,j-l} - W_l\}, \ 0 \end{cases}$$
 $(1\leq i\leq n,1\leq j\leq m)$

where

 $H_{i-1,j-1} + s(a_i, b_j)$ is the score of aligning a_i and b_j , $H_{i-k,j} - W_k$ is the score if a_i is at the end of a gap of length k, $H_{i,j-l} - W_l$ is the score if b_j is at the end of a gap of length l, 0 means there is no similarity up to a_i and b_j .

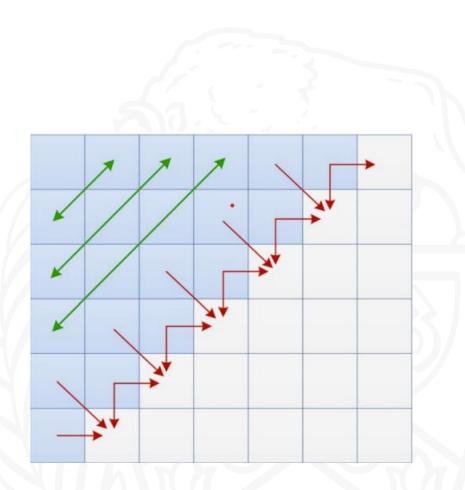
University at Buffalo The State University of New York

	0	0	0	0	0	0	0	0	0
G	0	0	3	•1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
Т	0	3	1	6	4	2 -	€0	1	4
Т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	•4	8	6
Α	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
Т	0	3	1	5	4	6	11	10	8
Α	0	1	0	3	2	7	9	8	7

		т	G	т	т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0	0	3	1	0	0	0	3	3
G	0	0	3	1	0	0	0	3	6
т	0	3	1	6	4	2	0	1	4
т	0	3	1	4	9	7	5	3	2
G	0	1	6	4	7	6	4	8	6
Α	0	0	4	3	5	10	8	6	5
С	0	0	2	1	3	8	13	11	9
т	0	3	1	5	4	6	11	10	8
Α	0	1	0	3	2	7	9	8	7

The Alignment result is:

GTT-AC GTTGAC



Need for Parallel

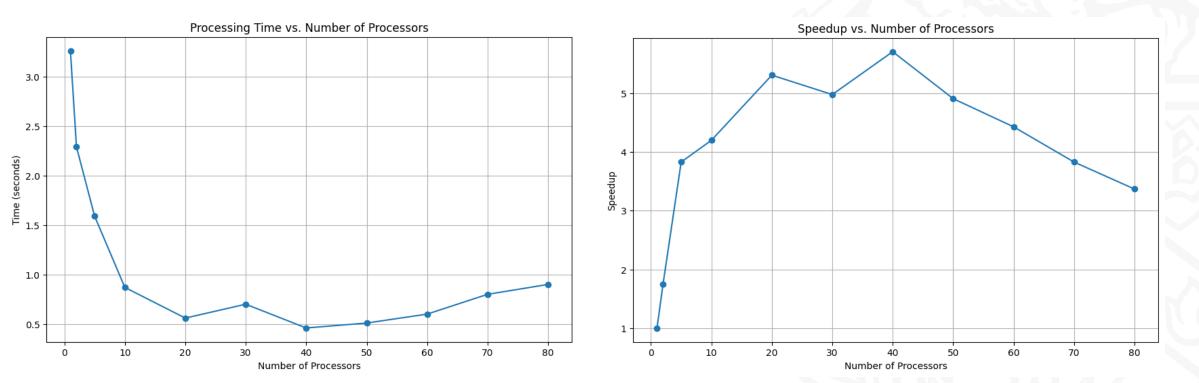
- Sequence alignment is a highly time-consuming task as it takes quadratic time which is O(mn), m,n are the lengths of the protein sequences
- Let's take an example of (COVID-19), scientists identified its common features by aligning it against other viruses

Parallel Implementation

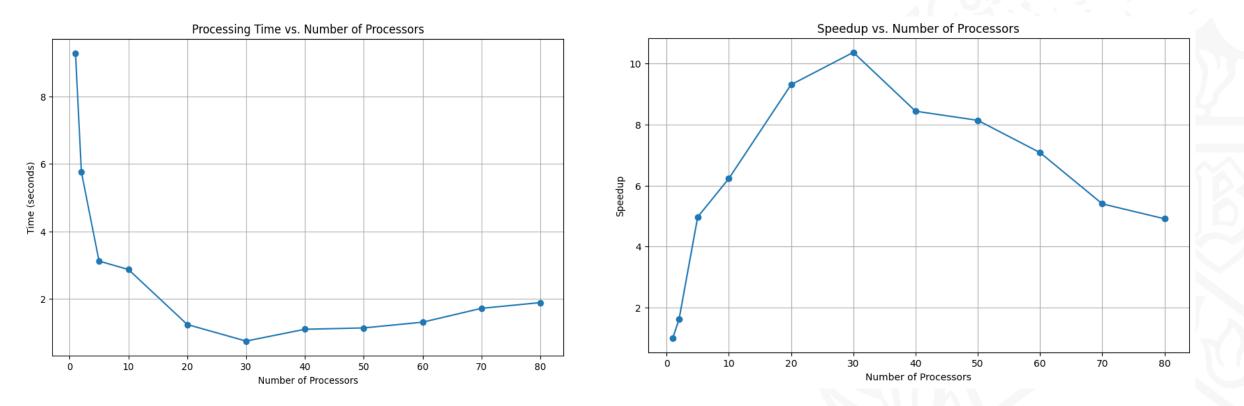
- Each cell in the computation matrix depends on the calculations of three other cells, as indicated by red arrows in the document.
- Diagonal elements doesn't depend on the other diagonal elements so they can be computed parallelly

Parallel Implementation

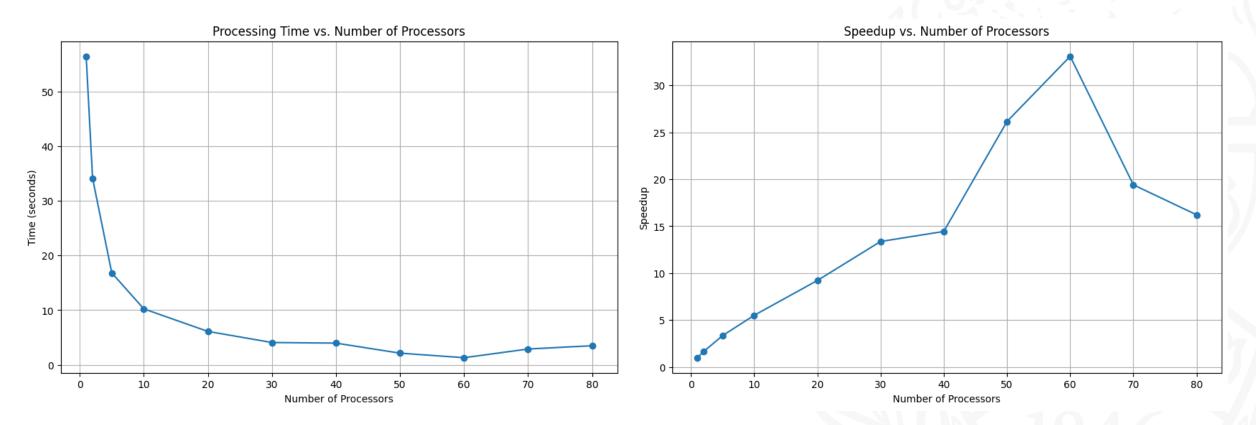
	-	С	G	G	G	Т	Α	Т	С
-	0	0	0	0	0	0	0	0	0
C	0	T1	T2	T3	T4	T5	T6	T7	T8
C	0	T2	Т3	T4	T5	T6	T7	T8	T9
C	0	Т3	T4	T5	T6	T7	T8	T9	T10
Т	0	T4	T5	T6	T7	T8	T9	T10	T11
Α	0	T5	T6	T7	T8	T9	T 10	T11	T12
G	0	T6	T7	T8	T9	T10	T11	T12	T13
G	0	T7	T8	T9	T10	T11	T12	T13	T14
Т	0	T8	T9	T10	T11	T12	T13	T14	T15

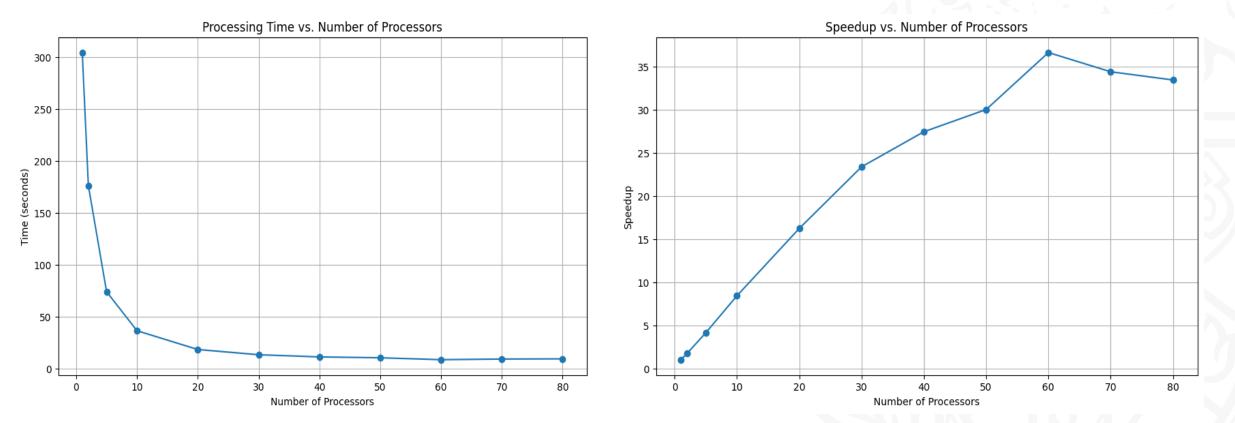

Figure 2. Cases calculable at the same time T_i .

-	С	G	G	G	Т	A	Т	С								
0	0	0	0	0	0	0	0	0								
-	0	T1	T2	T3	T4	T5	T6	T7	T8							
	С	0	T2	T3	T4	T5	T6	T7	T8	T9						
		С	0	T3	T4	T5	T6	T7	T8	T9	T10					
			С	0	T4	T5	T 6	T7	T8	T9	T10	T11				
				Т	0	T5	T6	T7	T8	T9	T10	T11	T12			
					А	0	T6	T7	T8	T9	T10	T11	T12	T13		
						G	0	T7	T8	T9	T10	T11	T12	T13	T14	
							G	0	T8	Т9	T10	T11	T12	T13	T14	T15
								Т	0							


Figure 3. Linear representation of the parallelizable boxes.

Results


For dataset N = 1000


For N = 2000

For N = 5000

For N = 10000

References

- Chaibou, Amadou, and Oumarou Sie. "Comparative study of the parallelization of the Smith-Waterman algorithm on OpenMP and Cuda C." Journal of Computer and Communications 3.06 (2015): 107.
- https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
- Parallelizing the Smith-Waterman Algorithm using OpenSHMEM and MPI-3 One-Sided Interfaces -Matthew Baker, Aaron Welch, Manjunath Gorentla Venkata.

Thank You