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1. Chose a pivot element
2. Place all elements smaller than pivot to a 

smallList
3. Place  all elements larger than pivot to a 

bigList
4. Do steps 1-3 recursively for smallList and 

bigList
a. Quicksort(smallList)
b. Quicksort(bigList)

5. Stitch smallList , pivot and bigList

Traditional Quicksort Algorithm

Figure : Performance Comparison of Sequential Quick Sort and Parallel Quick Sort Algorithms - Rajput IS et al. 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.252.9314&rep=rep1&type=pdf


Traditional Quicksort Algorithm : Why not just do this??

• This works for a shared memory setting. Imagine data 
across several processing elements .

• Now the solution would need random movement of values 
across processing elements - involves expensive 
communication

(OR) 

pooling all elements to one 
processor  - which would flood  
one processor and not balance work
for very large problems

Figure : Performance Comparison of Sequential Quick Sort and Parallel Quick Sort Algorithms - Rajput IS et al. 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.252.9314&rep=rep1&type=pdf


Hypercubes: What are they? 

• a hypercube of size 𝒏 consists 

of 𝑛 processors indexed by the 

integers 0,1, … , 𝑛 − 1 , 

where 𝑛 is an integral power of 2.

• Processors A and B are 

connected if and only if the 

unique log₂𝑛-bit represent their indices 

differ in exactly 1 position. 

Figure : Algorithms, Sequential and Parallel: A Unified Approach – Russ Miller and Laurence Boxer. 3rd Edition.



Hyperquicksort
1. Assume n/p data across each of the 2ᵈ processors

2. Sort data on each processor and broadcast 
median(pivot) from p0 to other processors in group

3. Locally on all processors use binary search to find 
pivot and make smallList ([0:pivot]) and 
bigList([pivot+1::])

4. Swap smallList and bigList across pair processors 
in subcube across degree

Pair Processor =  (di) XOR (rank)

5. Repeat 2-4 for next degree of subcube until you have 
exhausted hypercube dimensions

6. Sort individual processors (d=0)

Example for p = 2² , Degree = 2 hypercube 
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Algorithm Theoretical Analysis
1. Sort Locally 

2. Send Group

a. Grouping - (Identify who would broadcast pivot) and 
MPI SendRecv

3. Make and send small and big lists 

a. Binary search received pivot (largest index after pivot)

b. Split sorted list based on the above. Send List sizes to 
pair processors

c. Send Lists 

Steps  1-3 occur for d steps. (d is the tot.hypercube degree)

4. Sort Locally

Average Case time :
log (p)* [ n/p log(n/p) + (Time for broadcast) + log(n/p) + 
(Time for data swap MPI SendRecv) ]

Example for p = 2² , Degree = 2 hypercube 
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• Number of Processing Elements
 = [1, 2, 4, 8, 16, 32, 64, 128, 256]
 

• Number of Nodes (corresponding to above)
 = [1, 1, 1, 1, 1,   2, 4, 8,  16]
 

• Hypercube dimensions (corresponding to above)
 = [0, 1, 2, 3,    4,   5,   6,     7,    8]
 

• Problem Sizes (in GB)
 = [1, 2, 4, 10, 20, 60]
 

• Partition
 General-Compute 
 

• Memory Allocation
  64 GB per node 

 
 
 

Testing Considerations and SLURM specifications



Observations - Runtime 
p\n 1 GB 2GB 4GB 10GB 20GB 60GB

1 62.7239 341.8013 710.964 1887.16 3935.94 SlurmTimeOut

2 97.3456 544.2685 1129.17 1911.79 3829.21 SegFault

4 65.1068 358.4353 942.285 1650.88 3397.395 SegFault

8 55.3394 303.9763 679.479 1693.35 2507.14 SegFault

16 47.8395 265.3903 648.714 1543.02 2236.65 SegFault

32 35.5152 195.7346 400.773 1158.03 1667.355 SegFault

64 22.6964 115.9353 241.771 624.37 1099.485 4241.36

128 14.2269 68.0167 135.585 349.58 698.759 2428

256 14.4909 56.1877 108.853 274.6 556.83 1842.5



Observations - Runtime 



Observations and Discussion -  Runtime

• Runtime reduction is minimal for small 
problems, larger as the problem size 
increases. Arguably displays good reduction 
between 2-64 PEs for the large problems. 

• Cases where it has even spiked (from 2-4) 
compared to sequential solution. (Since 
communication takes longer than sorting for 
smaller problems)

• 1-32 PEs fails with Segmentation Fault for 
60GB problem. 



Observations - Speedup 
p\n 1 GB 2GB 4GB 10GB 20GB 60GB

1 1 1 1 1 1 -

2 0.6443424253 0.6280012531 0.6296341561 0.9871167858 1.02787259 -

4 0.9634001364 0.9535927404 0.754510578 1.143123667 1.15851704 -

8 1.133440189 1.124434043 1.046336973 1.114453598 1.569892387 -

16 1.311132014 1.28791934 1.095959082 1.223030162 1.759747837 -

32 1.766114227 1.746248747 1.77398178 1.62962963 2.360589077 -

64 2.763605682 2.948207319 2.94065045 3.022502683 3.579803272 1

128 4.408824129 5.025255562 5.243677398 5.398363751 5.632757503 1.746853377

256 4.328502715 6.083205043 6.531413925 6.872396213 7.068476914 2.301959294



Observations - Speedup



Observations and Discussion - Speedup 

• In theory the ideal speedup would be                                   
p * [(logn)/ log(n/p)] which you could 
approximate  to p.

• We hardly even get half of the mentioned 
ideal speedup (1-4 PEs is the closest to 
ideal) 

• Also the idea we got from runtime analysis 
that “the algorithm was improving for larger 
problems”  is not true as the speed up is 
not too different with problem sizes. 

 This can also be attributed to the 
increase in communication with more 
PEs



Observations - Efficiency 
p\n 1 GB 2GB 4GB 10GB 20GB

1 1 1 1 1 1

2 0.3221712127 0.3140006265 0.314817078 0.4935583929 0.513936295

4 0.2408500341 0.2383981851 0.1886276445 0.2857809168 0.2896292601

8 0.1416800236 0.1405542554 0.1307921216 0.1393066997 0.1962365484

16 0.0819457509 0.08049495875 0.06849744263 0.0764393851 0.1099842398

32 0.0551910696 0.05457027334 0.05543693063 0.05092592593 0.07376840865

64 0.04318133878 0.04606573936 0.04594766328 0.04722660442 0.05593442612

128 0.03444393851 0.03925980908 0.04096622967 0.0421747168 0.04400591799

256 0.01690821373 0.0237625197 0.02551333565 0.02684529771 0.02761123795



Discussion - Efficiency 

• This efficiency is very bad and cascades from our 
discussion in speedup. The best performance can 
witnessed between 1 - 4 processors for the larger 
20GB problem with a megre 51%. 

• The drastic drop in efficiency with the increase in 
processing elements and nodes suggests that my 
algorithm could be breaking due to high 
communication overheads.

• Also there is a chance for the data partitioning to be 
bad and cause the lack of PE use. (This could have 
also caused the terrible efficiency)



Problems in hyperquicksort algorithm

• Arriving at a bad pivot can cause uneven data partitioning to result in a less 
use of some PEs - since this is followed by a sequential sort step. (thus low 
efficiency)

• High communication overhead in data swap step. 

• Can only work with processors in the powers of 2 - Which means the num. 
processors increase exponentially if we need more PEs and therefore the 
communication overhead also increases in an exponential scale.

Major Coding optimisations to do to better the speedup and efficiency

• Heavy list merge: Can use std::vector.reserve() before  std::vector.insert() to 
avoid dynamic resizing. 

• Can use MPI profiling tools to better identify where the communication 
overhead is most. 

Discussion - Problems and Areas identified for 
improvement
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Comments or 
Suggestions? 
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