
Sai Vishwanath Venkatesh

CSE 708:
Hypercube based
Parallel Quicksort
using MPI

1. Overview of Traditional Quicksort Algorithm
2. About Hypercube
3. Overview of Hyperquicksort
4. Algorithm Complexity breakdown
5. Testing Considerations
6. Observations, Results and Discussion

a. Runtime
b. Speedup
c. Efficiency

7. Problems identified and areas of improvement

Outline

1. Chose a pivot element
2. Place all elements smaller than pivot to a

smallList
3. Place all elements larger than pivot to a

bigList
4. Do steps 1-3 recursively for smallList and

bigList
a. Quicksort(smallList)
b. Quicksort(bigList)

5. Stitch smallList , pivot and bigList

Traditional Quicksort Algorithm

Figure : Performance Comparison of Sequential Quick Sort and Parallel Quick Sort Algorithms - Rajput IS et al.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.252.9314&rep=rep1&type=pdf

Traditional Quicksort Algorithm : Why not just do this??

• This works for a shared memory setting. Imagine data
across several processing elements .

• Now the solution would need random movement of values
across processing elements - involves expensive
communication

(OR)

pooling all elements to one
processor - which would flood
one processor and not balance work
for very large problems

Figure : Performance Comparison of Sequential Quick Sort and Parallel Quick Sort Algorithms - Rajput IS et al.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.252.9314&rep=rep1&type=pdf

Hypercubes: What are they?

• a hypercube of size 𝒏 consists

of 𝑛 processors indexed by the

integers 0,1, … , 𝑛 − 1 ,

where 𝑛 is an integral power of 2.

• Processors A and B are

connected if and only if the

unique log₂𝑛-bit represent their indices

differ in exactly 1 position.

Figure : Algorithms, Sequential and Parallel: A Unified Approach – Russ Miller and Laurence Boxer. 3rd Edition.

Hyperquicksort
1. Assume n/p data across each of the 2ᵈ processors

2. Sort data on each processor and broadcast
median(pivot) from p0 to other processors in group

3. Locally on all processors use binary search to find
pivot and make smallList ([0:pivot]) and
bigList([pivot+1::])

4. Swap smallList and bigList across pair processors
in subcube across degree

Pair Processor = (di) XOR (rank)

5. Repeat 2-4 for next degree of subcube until you have
exhausted hypercube dimensions

6. Sort individual processors (d=0)

Example for p = 2² , Degree = 2 hypercube

00 01 10 11

Broadcast
Pivot 2

00 01 10 11

bigList

smallList

00 01 10 11

Swap across
d=2

Swap across
d=1

smallList

bigList
smallList

bigList

00 01 10 11

Broadcast
Pivot1`1

Broadcast
Pivot1`2

Algorithm Theoretical Analysis
1. Sort Locally

2. Send Group

a. Grouping - (Identify who would broadcast pivot) and
MPI SendRecv

3. Make and send small and big lists

a. Binary search received pivot (largest index after pivot)

b. Split sorted list based on the above. Send List sizes to
pair processors

c. Send Lists

Steps 1-3 occur for d steps. (d is the tot.hypercube degree)

4. Sort Locally

Average Case time :
log (p)* [n/p log(n/p) + (Time for broadcast) + log(n/p) +
(Time for data swap MPI SendRecv)]

Example for p = 2² , Degree = 2 hypercube

00 01 10 11

Broadcast
Pivot 2

00 01 10 11

bigList

smallList

00 01 10 11

Swap across
d=2

Swap across
d=1

smallList

bigList
smallList

bigList

00 01 10 11

Broadcast
Pivot1`1

Broadcast
Pivot1`2

• Number of Processing Elements
 = [1, 2, 4, 8, 16, 32, 64, 128, 256]

• Number of Nodes (corresponding to above)
 = [1, 1, 1, 1, 1, 2, 4, 8, 16]

• Hypercube dimensions (corresponding to above)
 = [0, 1, 2, 3, 4, 5, 6, 7, 8]

• Problem Sizes (in GB)
 = [1, 2, 4, 10, 20, 60]

• Partition
 General-Compute

• Memory Allocation
 64 GB per node

Testing Considerations and SLURM specifications

Observations - Runtime
p\n 1 GB 2GB 4GB 10GB 20GB 60GB

1 62.7239 341.8013 710.964 1887.16 3935.94 SlurmTimeOut

2 97.3456 544.2685 1129.17 1911.79 3829.21 SegFault

4 65.1068 358.4353 942.285 1650.88 3397.395 SegFault

8 55.3394 303.9763 679.479 1693.35 2507.14 SegFault

16 47.8395 265.3903 648.714 1543.02 2236.65 SegFault

32 35.5152 195.7346 400.773 1158.03 1667.355 SegFault

64 22.6964 115.9353 241.771 624.37 1099.485 4241.36

128 14.2269 68.0167 135.585 349.58 698.759 2428

256 14.4909 56.1877 108.853 274.6 556.83 1842.5

Observations - Runtime

Observations and Discussion - Runtime

• Runtime reduction is minimal for small
problems, larger as the problem size
increases. Arguably displays good reduction
between 2-64 PEs for the large problems.

• Cases where it has even spiked (from 2-4)
compared to sequential solution. (Since
communication takes longer than sorting for
smaller problems)

• 1-32 PEs fails with Segmentation Fault for
60GB problem.

Observations - Speedup
p\n 1 GB 2GB 4GB 10GB 20GB 60GB

1 1 1 1 1 1 -

2 0.6443424253 0.6280012531 0.6296341561 0.9871167858 1.02787259 -

4 0.9634001364 0.9535927404 0.754510578 1.143123667 1.15851704 -

8 1.133440189 1.124434043 1.046336973 1.114453598 1.569892387 -

16 1.311132014 1.28791934 1.095959082 1.223030162 1.759747837 -

32 1.766114227 1.746248747 1.77398178 1.62962963 2.360589077 -

64 2.763605682 2.948207319 2.94065045 3.022502683 3.579803272 1

128 4.408824129 5.025255562 5.243677398 5.398363751 5.632757503 1.746853377

256 4.328502715 6.083205043 6.531413925 6.872396213 7.068476914 2.301959294

Observations - Speedup

Observations and Discussion - Speedup

• In theory the ideal speedup would be
p * [(logn)/ log(n/p)] which you could
approximate to p.

• We hardly even get half of the mentioned
ideal speedup (1-4 PEs is the closest to
ideal)

• Also the idea we got from runtime analysis
that “the algorithm was improving for larger
problems” is not true as the speed up is
not too different with problem sizes.

 This can also be attributed to the
increase in communication with more
PEs

Observations - Efficiency
p\n 1 GB 2GB 4GB 10GB 20GB

1 1 1 1 1 1

2 0.3221712127 0.3140006265 0.314817078 0.4935583929 0.513936295

4 0.2408500341 0.2383981851 0.1886276445 0.2857809168 0.2896292601

8 0.1416800236 0.1405542554 0.1307921216 0.1393066997 0.1962365484

16 0.0819457509 0.08049495875 0.06849744263 0.0764393851 0.1099842398

32 0.0551910696 0.05457027334 0.05543693063 0.05092592593 0.07376840865

64 0.04318133878 0.04606573936 0.04594766328 0.04722660442 0.05593442612

128 0.03444393851 0.03925980908 0.04096622967 0.0421747168 0.04400591799

256 0.01690821373 0.0237625197 0.02551333565 0.02684529771 0.02761123795

Discussion - Efficiency

• This efficiency is very bad and cascades from our
discussion in speedup. The best performance can
witnessed between 1 - 4 processors for the larger
20GB problem with a megre 51%.

• The drastic drop in efficiency with the increase in
processing elements and nodes suggests that my
algorithm could be breaking due to high
communication overheads.

• Also there is a chance for the data partitioning to be
bad and cause the lack of PE use. (This could have
also caused the terrible efficiency)

Problems in hyperquicksort algorithm

• Arriving at a bad pivot can cause uneven data partitioning to result in a less
use of some PEs - since this is followed by a sequential sort step. (thus low
efficiency)

• High communication overhead in data swap step.

• Can only work with processors in the powers of 2 - Which means the num.
processors increase exponentially if we need more PEs and therefore the
communication overhead also increases in an exponential scale.

Major Coding optimisations to do to better the speedup and efficiency

• Heavy list merge: Can use std::vector.reserve() before std::vector.insert() to
avoid dynamic resizing.

• Can use MPI profiling tools to better identify where the communication
overhead is most.

Discussion - Problems and Areas identified for
improvement

References
1. Rajput, I.S., Kumar, B. and Singh, T., 2012. Performance comparison of sequential quick

sort and parallel quick sort algorithms. International Journal of Computer Applications,
57(9).

2. Algorithms, Sequential and Parallel: A Unified Approach – Russ Miller and Laurence Boxer.

3. https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_sorting.htm

Questions or
Comments or
Suggestions?
saivishw@buffalo.edu

