PARALLELIZATION OF PRIM'S ALGORITHM TO FIND THE MST

By Sarath Chandra Reddy Rayapu

Minimum Spanning Tree (MST) of a graph

- A spanning tree (a tree with all the nodes in the graph) where the sum of the edges is the least possible.

Undirected Graph

Spanning
Tree

$$
\text { Cost }=11(=4+5+2)
$$

Minimum Spanning
Tree
Cost $=7(=4+1+2)$

Applications of MST

- Design of cost-effective Networks and efficient Circuits
- Transportation Planning: to determine the most cost-effective routes for building roads, railways, or other transportation networks.
- Image Processing: used in Image Segmentation

Prim's Algorithm (Sequential):

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.
3. Repeat step 2 (until all vertices are in the tree)
4. Time $=O\left(n^{\wedge} 2\right)$

Pseudo code for Parallel approach

- Initialization:
- Divide the set of vertices V into p subsets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{p}}$
- Assign each subset to a different process
- While vertices_in_MST is not equal to V :
- For each process pi:
- Find the minimum-weight edge e_{i} (candidate) connecting MST to vertices in Vi
- Send e_{i} to the root process using MPI_Reduce to find the global minimumweight edge emin
- If rank of current process is root:
- \quad Select the minimum-weight edge emin from the received edges
- Add emin to MST
- Broadcast emin to all processes
- Continue this till all the vertices are in the MST
- Time $=O\left(n^{\wedge} 2 / p\right)+O(n l o g p)$

- Partitioning of adjacency matrix among ' p ' processors:

Results

- Input graph: 10000 nodes (5\% density)

Results

- Input graph: 10000 nodes (10\% density)

Results

- Input graph: 10000 nodes (20\% density)

Observations

- This algorithm works best with larger datasets by gaining considerable speedups.
- Also, higher density graphs are better suited for this as we are using an adjacency matrix to store the graph.

References

- Parallelization of Minimum Spanning Tree Algorithms Using

Distributed Memory Architectures
http://www.scl.rs/papers/Loncar-TET-Springer.pdf

THANK YOU

T University at Buffalo The State University of New York

