## **PARALLELIZATION OF PRIM'S ALGORITHM TO FIND THE MST** By Sarath Chandra Reddy Rayapu

University at Buffalo The State University of New York



#### Minimum Spanning Tree (MST) of a graph

• A spanning tree (a tree with all the nodes in the graph) where the sum of the edges is the least possible.







## Applications of MST

- Design of cost-effective Networks and efficient Circuits
- Transportation Planning: to determine the most cost-effective routes for building roads, railways, or other transportation networks.
- Image Processing: used in Image Segmentation



## Prim's Algorithm (Sequential):

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.

2. Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree.

- 3. Repeat step 2 (until all vertices are in the tree)
- 4. Time =  $O(n^2)$



## Pseudo code for Parallel approach

- Initialization:
- Divide the set of vertices V into p subsets V1, V2, ..., Vp  $\,$
- Assign each subset to a different process
- While vertices\_in\_MST is not equal to V:
- For each process pi:
  - Find the minimum-weight edge ei (candidate) connecting MST to vertices in Vi
  - Send ei to the root process using MPI\_Reduce to find the global minimumweight edge emin
- If rank of current process is root:
  - Select the minimum-weight edge emin from the received edges
  - Add emin to MST
- Broadcast emin to all processes
- Continue this till all the vertices are in the MST
- Time =  $O(n^2/p) + O(nlogp)$



• Partitioning of adjacency matrix among 'p' processors:





#### Results

• Input graph: 10000 nodes (5% density)



#### Results

• Input graph: 10000 nodes (10% density)



### Results

• Input graph: 10000 nodes (20% density)



## Observations

- This algorithm works best with larger datasets by gaining considerable speedups.
- Also, higher density graphs are better suited for this as we are using an adjacency matrix to store the graph.



### References

 Parallelization of Minimum Spanning Tree Algorithms Using Distributed Memory Architectures

http://www.scl.rs/papers/Loncar-TET-Springer.pdf



# **THANK YOU**



