
Change
Classical Optimization Problem

Min Coin

Introduction

Contents

01

Applications

02

Approach to solve

03

Tabular Solution

04

Parallel

Implementation

05

Results

06

The minimum coin change problem is a classic

problem in computer science and mathematics

that involves finding the fewest number of coins

needed to make change for a given amount of

money.

Introduction

Vending

Machines:

Applications

To give the least amount of

change when a customer

inserts money.

ATM

Withdrawals:

Financial

Applications

Olivia Wilson
Project manager

Optimization

Problems

 In finance, optimizing cash

flow and minimizing the

number of transactions can

be crucial.

To dispense cash in an

efficient manner, which

includes giving out the least

number of coins or bills to

customers.

its principles can also be

applied in various

optimization contexts,

including logistics and

scheduling.

For each of the available coins

we have 2 options

Solution

Pick the coin

Leave the coin

Optimization

Function Min(Pick,

Leave)

Heart of Dynamic

Programming

● Each cell in the table stores the minimum number of coins

 if(coins[i-1]<=j)
 ans[i][j] = Math.min(ans[i-1][j-coins[i-1]]+1, ans[i-1][j]);
 else
 ans[i][j] = ans[i-1][j];

Index 0 1 2 3 4 5

0 0 Inf Inf Inf Inf Inf

1 1 0 1 Inf Inf Inf Inf

3 2 0 1 Inf 1 2 Inf

5 3 0 1 Inf 1 2 1

7 4 0 1 Inf 1 2 1

Sum

C
o
in
s

 Input: [1,3,5,7], Amount: 5
 Output:
 Min number of coins or

 -1 if that amount can not be

made

Multiple Processors

with

 Single Column

To Processor - rank + denominations[i-1]
Value to be send - ansPerProcessor[i-1][0]
From Processor - rank - denominations[i-1]

Index 0 1 2 3 4 5

0 0 Inf Inf Inf Inf Inf

1 1 0 1 Inf Inf Inf Inf

3 2 0 1 Inf 1 2 Inf

5 3 0 1 Inf 1 2 1

7 4 0 1 Inf 1 2 1

P1 P2 P3 P4 P4 P5

Sum

C
o
in
s start

start

Multiple Processors

with

Mulitple Columns

To Processor with rank - (rank * COLS + j + coins[i - 1]) / COLS
Sending Tag - rank * COLS + j
To receive from - (rank * COLS + j - coins[i - 1]) / COLS
Receiving tag - rank * COLS + j - coins[i - 1]

index 0 1 2 3 4 5

0 0 Inf Inf Inf Inf Inf

1 1 0 1 Inf Inf Inf Inf

3 2 0 1 Inf 1 2 Inf

5 3 0 1 Inf 1 2 1

7 4 0 1 Inf 1 2 1

 P1 P2 P3

Sum

C
o
in
s

Sequential execution Time

PEs
Input Size
(Total Col)

Time (in seconds)

1 200 0.005372

1 400 0.016355

1 600 0.020413

1 800 0.22985

1 1000 0.323971

1 1200 0.537114

Amdahl’s Law

proce

ssors

Data per

processor

Input

Size

(Total

Col)

Nodes,

core

Time (in

seconds)

5 500 2000 5, 1 0.076854

20 100 2000 20, 1 0.043044

40 50 2000 40, 1 0.030136

60 34 2000 60, 1 0.017746

80 25 2000 80, 1 0.095246

100 20 2000 100, 1 0.107106

120 17 2000 120, 1 0.171037

140 15 2000 140, 1 0.215846

Data Per Processor Constant

process

ors

Data per

processor

Input

Size

(Total

Col)

Nodes,

cores

Time (in

seconds)

20 10 200 20, 1 0.033918

40 10 400 40, 1 0.020783

60 10 600 60, 1 0.020312

80 10 800 80, 1 0.068161

100 10 1000 100, 1 0.194891

120 10 1200 120, 1 0.41438

Gustafson’s Law

Data per

processor

Input

Size

(Total

Col)

Time (in
seconds
) serial

Nodes,

cores

Time (in

seconds)

parallel

10 200 0.005372 20, 1 0.033918

10 400 0.016355 40, 1 0.020783

10 600 0.020413 60, 1 0.020312

10 800 0.22985 80, 1 0.068161

10 1000 0.323971 100, 1 0.194891

10 1200 0.537114 120, 1 0.41438

Thank you
Any Questions

