
Parallel Image Blurring
With OpenMP

Prepared by: Sen Pan

Instructor: Dr. Russ Miller

Date : Dec 10, 2020

Problem Definition: Image Blurring
Image blurring is a type of image filtering
which is everywhere in our daily lives. filtered
photos (blurred, sharppend etc.) are
ubiquitous in our social media feeds,
magazines, books.

The essence of image blurring (or any
other type of filtering) is Matrix
Multiplication. Which apply a kernel (matrix)
on the image matrix to change its value and
repeat the multiplication for each of the pixel in
image matrix.

2

Img 1. image filtering . Source: https://www.imgtec.com/blog/heterogeneous-
compute-case-study-image-convolution-filtering/

Image Blurring Sequential algorithm:

n

r

r

Filter matrix
(size: r * r)

Image matrix (size : m * n)

qGiven a image with size m x n, and a filter of size r x r

qDo a r x r size matrix multiplication for each pixel in the image matrix.

qThere are a total of m*n pixels in the image and the time complexity for a matrix multiplication is

O(!") . Thus, the overall time complexity of the sequential algorithm is O(m * n * !").

qFor simplicity, we assume m = n = r. So the time complexity of the sequential algorithm is O(%&).

for (i = 0; i < m; i++)
for (j = 0; i < n; j++)

matrix_multiplication(); O(!3)
end for

end for

Overall time complexity of this algorithm is O(%5)

pixel[i][j]

m

3

4

1.Partition these matrices in square blocks p, where p is

the number of processes available. So there are sqrt(p) *

sqrt(p) submatrices.

2.Each process (Pij) can maintain a submatrix of A matrix

(Aij) and a submatrix of B matrix (Bij).

3.Each block is sent to each process, and the copied sub

blocks are multiplied together and the results added to the

partial results in the C sub-blocks.

4.The A sub-blocks are rolled one step to the left and the

B sub-blocks are rolled one step upward.

5.Repeat steps 3 & 4 sqrt(p) times to get the final result.

Image Blurring with parallel matrix multiplication

Img 2. parallel matrix computing. Source:
https://iq.opengenus.org/cannon-algorithm-

distributed-matrix-multiplication/

5

2 1 5 3
0 7 1 6
9 2 4 4
3 6 7 2

A =

6 1 2 3
4 5 6 5
1 9 8 -8
4 0 -8 5

B =

Image Blurring with parallel matrix multiplication
Example: two 4 x 4 matrix multiplication with 4 processors.

First, partition each of the matrix into 4 submatrices:

A =

6 1 2 3
4 5 6 5
1 9 8 -8
4 0 -8 5

B =

2 1 5 3
0 7 1 6
9 2 4 4
3 6 7 2

P00
A00 B00

P01
A01 B01

P10
A10 B10

P11
A11 B11

6

5 3 2 1
1 6 0 7
9 2 4 4
3 6 7 2

1 9 2 3
4 0 6 5
6 1 8 -8
4 5 -8 5

A0 = B0 =

Image Blurring with parallel matrix multiplication
Second, shift first round of row, column data for initial alignment. Then do the local matrix
multiplication.

C0 =

17 45 10 11
25 9 42 35
62 19 0 -12
42 33 40 -46

Partial result matrix C0 :

Data shifting between processors:

P00
A01 B00

P01
A00 B11

P10
A10 B10

P11
A11 B11

A =

6 1 2 3
4 5 6 5
1 9 8 -8
4 0 -8 5

B =

2 1 5 3
0 7 1 6
9 2 4 4
3 6 7 2

6 1 8 -8
4 5 -8 5
1 9 2 3
4 0 6 5

7

A =

6 1 2 3
4 5 6 5
1 9 8 -8
4 0 -8 5

B =

2 1 5 3
0 7 1 6
9 2 4 4
3 6 7 2

2 1 5 3
0 7 1 6
4 4 9 2
7 2 3 6

A0 = B0 = C1 =

16 7 16 -25
28 35 -40 22
20 36 30 37
15 63 42 39

Image Blurring with parallel matrix multiplication
Third, do second round of row, column data shifting, then do the local matrix multiplication:

P00
A00 B00

P01
A01 B11

P10
A11 B10

P11
A10 B01

Data shifting between processors:

Partial result matrix C1 :

8

C = C0 + C1 =

33 52 26 -14
53 44 2 57
82 55 30 25
57 96 82 -7

Image Blurring with parallel matrix multiplication
Finally, update the partial result matrix C1 to C0 to get the final result.

17 45 10 11
25 9 42 35
62 19 0 -12
42 33 40 -46

16 7 16 -25
28 35 -40 22
20 36 30 37
15 63 42 39

+ =

9

Image Blurring with parallel matrix multiplication
Run parallel image blurring algorithm with OpenMP:

q Convert input image data into matrix representation and define filter matrix.

q Write the program for image blurring with Cannon’s algorithm.

q Parallelize the matrix multiplication part of the program using OpenMP.

q Test the program with different settings to compare the result.

10

Image size 1000 x 1000 test result:

Experiments:

Num of processors Run time (s) Speed up
1 13.48 1.0
2 6.72 2.0
4 3.36 4.0
8 1.69 8.0

16 0.85 15.8
32 0.44 30.7

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4 8 16 32

Image Size:1000 x 1000
Runtime (s)

num of
processors

11

Image size 5000 x 5000 test result:

Experiments:

Num of processors Run time Speed up
1 261.37 1.0
2 131.65 2.0
4 67.51 3.9
8 35.14 7.4

16 18.61 14.0
32 10.91 24.0

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1 2 4 8 16 32

Image Size:5000 x 5000
Runtime (s)

num of
processors

12

Image size 10000 x 10000 test result:

Experiments:

Num of processors Run time Speed up
1 1067.80 1.00
2 535.62 1.99
4 275.84 3.87
8 143.11 7.46

16 76.76 13.91
32 44.45 24.02

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1 2 4 8 16 32

Image Size:10000 x 10000
Runtime (s)

num of
processors

• Algorithm has very good scalability against input data size:

With the same number of processors being constant (32), data size change form 10#
(1000x1000), 25 x 10# (5000 x 5000) to 100 x10# (10000 x 10000);

13

Observations:

Input data size (relative) Runtime (s) Runtime(relative)

1 0.44 1

25 10.91 24.8

100 44.45 101.0

• Algorithm doesn’t work very well when the data size if very small. Probably due to
multithreading message passing overhead over shadows the actual calculating time,
which is very small.

• For example, with image size of 100x100:

14

Observations:

Num of processors Runtime(s)

1 0.000605
2 0.000531
4 0.000416
8 0.000488
16 0.000870
32 0.00178

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

0.002

1 2 4 8 16 32

Runtime(s)

Small data size (100x100)

• Russ Miller, “Algorithms Sequential & Parallel: A Unified Approach”

• Larry Meadows, “A Hands-on Introduction to OpenMP ”;

• Valentin Stoica, “Parallel Implementation of Image Filtering Algorithms in Multiprocessor Systems”;

• Ortega, Patricia, “Parallel Algorithm for Dense Matrix Multiplication”
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Ortega-Fall-2012-CSE633.pdf ;

• https://www.youtube.com/watch?v=nE-xN4Bf8XI&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

15

References:

16

Thanks!

