
Knapsack Algorithm

Presentation by Shrishti Karkera (50485408)

CSE 708 SEMINAR
by Prof. Russ Miller

Overview

Problem Definition ● Sequential approach

● Sequential

implementation

Observation● Parallel approach

● Parallel

implementation

Results

2

0/1 Knapsack

w1
v1

w2
v2

w3
v3

w4
v4

w5
v5

w6
v6W <= Total weight

Max Total value

3

Recursion

if n == 0 or W == 0:
 return 0

not_pick = knapSack(W, wt, val, n-1)
pick = -1e9
if (wt[n-1] <= W):
 pick = val[n-1] + knapSack(W-wt[n-1], wt, val, n-1)
return max(pick, not_pick)

def knapsack(W, wt, val):

Base Case

Conditions

4

Recursion with memoization

if n == 0 or W == 0:
 dp[n][W] = 0
 return 0
not_pick = knapSack(W, wt, val, n-1)
pick = -1e9
if (wt[n-1] <= W):
 pick = val[n-1] + knapSack(W-wt[n-1], wt, val, n-1)
dp[n][W] = max(pick, not_pick)

def knapsack(W, wt, val):

Base Case

Conditions

dp = 2d array (n+1 x W+1)

Check if value already present in the table

dp[i][w] = dp(values[i - 1] + dp[i - 1][w - weights[i - 1]], dp[i - 1][w])
5

Tabular DP

weights = [3, 4, 7]

values = [4, 5, 8]

W = 7

dp[i][w] = dp(values[i - 1] + dp[i - 1][w - weights[i - 1]], dp[i - 1][w])

Max profit

dp[][] 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 4 4 4 4 4

2 0 0 0 4 5 5 5 9

3 0 0 0 4 5 5 5 9

W

i

6

Approach 1 - 1 column per core

dp[][] 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1(3) 0 0 0 4 4 4 4 4

2(4) 0 0 0 4 5 5 5 9

3(7) 0 0 0 4 5 5 5 9

values = [4, 5, 8] Code

7

dp[][] 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1(3) 0 0 0 4 4 4 4 4

2(4) 0 0 0 4 5 5 5 9

3(7) 0 0 0 4 5 5 5 9

values = [4, 5, 8] Code

Approach 2 - multiple columns per core

Iterate
1. Send data
2. Receive data
3. Calculate for the current cell 8

Standard execution

Amdahl’s Law

f is the fraction of the program that must be executed
serially (i.e., cannot be parallelized) and p is the
number of processors.

9

Gustafson’s Law

Sp = p - (p -1) * f

where
f is the fraction of the program that is
inherently serial and p is the number of
processors

Scaled execution

10

Speedup

Speed-up = Tsequential

 Tparallel

11

References

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.h
tml
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.educative.io/answers/difference-between-amdahls-and-gustafsons-laws
https://www.stolaf.edu/people/rab/pdc/text/alg.htm#:~:text=to%20be%20avoided.-,Speedu
p,we%20have%20n%2Dfold%20speedup.

12

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.educative.io/answers/difference-between-amdahls-and-gustafsons-laws
https://www.stolaf.edu/people/rab/pdc/text/alg.htm#:~:text=to%20be%20avoided.-,Speedup,we%20have%20n%2Dfold%20speedup
https://www.stolaf.edu/people/rab/pdc/text/alg.htm#:~:text=to%20be%20avoided.-,Speedup,we%20have%20n%2Dfold%20speedup

Thank you!

Feel free to ask questions

13

