
PARALLEL
QUICKSORT
Prepared and Presented by: Steven Pittaro

• Parallel Implementation

• Amdahl Time Charts

• Gustafson's Time Charts

• Observations

• Questions

Proposed Parallel Implementation

• Split your data into two halves according to the splitter you have

• Check to see if you are in the upper or lower half of processes

for your division (EX: if you are >31 or <=31 for 64 processes)

• If you are in the upper half send your lower data to your partner

in the lower half, and vice versa for if you are in the lower half.

• Combine the new data on each process.

• Repeat, step 1 going down each significant bit as you recurse.

3

Visualized…

4

How Data Was Gathered

• Run On CCR using the intel-mpi/4.1.3 module

• Ran each Data Point/process number pair 6 times

• Got a time output from each process and averaged them

together for one runtime

• Averaged together the 6 runtime totals to get the final average

runtime for the chart

• Requested exclusive process by running

fisbatch --nodes=8 --ntasks-per-node=8 --time=2:30:00

– partition=general-compute --qos=general-compute --exclusive

5

500,000 Data Points

2 0.04631

4 0.137358

8 0.177292

16 0.102867

32 0.0833

64 0.126603

6

1,000,000 Data Points

2 0.061422

4 0.168529

8 0.202968

16 0.225062

32 0.121137

64 0.136793

7

2,000,000 Data Points

2 0.078498

4 0.208954

8 0.299576

16 0.271205

32 0.233671

64 0.197424

8

500,000 Data Points

2 0.0175

4 0.03

8 0.0375

16 0.072188

32 0.101667

64 0.133385

9

1,000,000 Data Points

2 0.024167

4 0.045

8 0.064792

16 0.114583

32 0.16

64 0.209714

10

2,000,000 Data Points

2 0.04

4 0.082083

8 0.121667

16 0.19125

32 0.240887

64 0.351094

11

Observations

• Code can likely be optimized further because of the data trends

• Sending overhead is large, so that can affect results depending

on data distribution

• Data distribution is not optimal, as in you cannot tell how much

data will end up on each process

• A reason that the two processes could run faster than the higher

processes is due to it being less steps to separate the data into

its halves as in the implementation the maximum amount of runs

is log10(n) where n is the number of processes or if there is 1

process per division, as such for the lower amount of processes,

they will finish in fewer steps.

12

References used during project

• Algorithms Sequential and Parallel: A Unified Approach

- Russ Miller & Laurence Boxer

13

QUESTIONS?

14

