PAGE RANK ALGORITHM

CSE 708

Fall 2022

Subramani Ramadas

50365528

University at Buffalo The State University of New York

Agenda

- PageRank The Algorithm
- Applications
- Sequential Implementation
- Parallel Implementation
- Results
- Observation
- Convergence of PageRank
- References
- Questions?

What is PageRank?

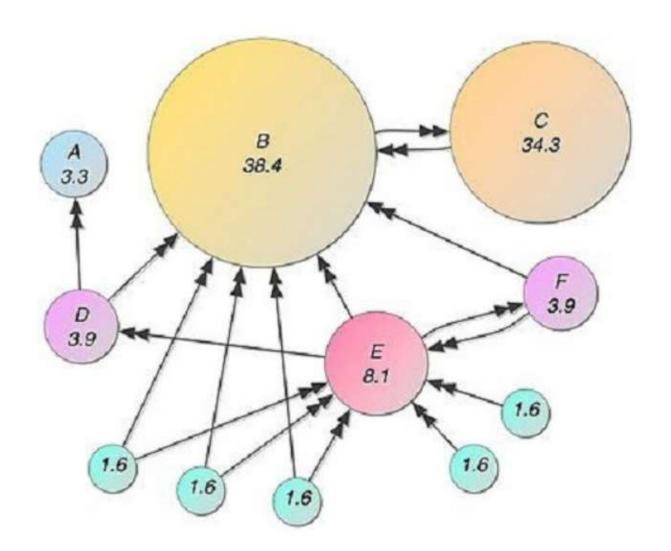
PageRank is an iterative algorithm used by Google Search to rank web pages in their search engine results. A page is considered more important if it is pointed to by other important pages.

How does PageRank work?

The algorithm takes into consideration the number of links to a page and also the quality of these links in order to determine a rough estimate of how important the page is.

It is designed with the underlying assumption that more important websites are likely to receive more links.

University at Buffalo The State University of New York



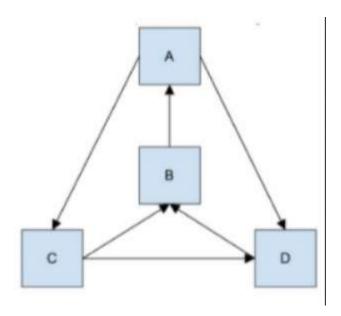


Applications

When PageRank is used within applications, it tends to acquire a new name:

- PageRank in Biology and Bioinformatics: GeneRank, ProteinRank, IsoRank
- PageRank in Complex Engineered Systems: MonitorRank
- PageRank of the Linux Kernel
- Roads and Urban Spaces: to predict both traffic flow and human movement.
- PageRank in Literature: BookRank

Sequential Implementation



Here, there are 4 pages: A, B, C and D with links between them as shown.

Initially, (for iteration 0) the pagerank of each page is taken as $\frac{1}{n}$

Thus,
$$PR(A) = PR(B) = PR(C) = PR(D) = \frac{1}{4}$$

In every successive iteration, the pagerank of each page is calculated as:

$$PR_n(u) = \frac{1-d}{n} + d * \Sigma_{v \in B_u} \frac{PR_{n-1}(v)}{L(v)}$$

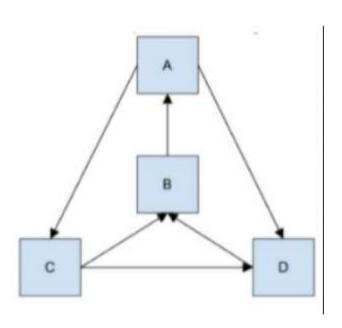
where $PR_n(u) => PageRank$ of u in nth iteration where n > 0;

 $B_u => pages pointing to u;$

L(v) => number of outbound links from page v

d => damping factor or click-through probability of the surfer (usually 0.85)

PageRank – With Example Continued



Damping factor is taken as 1.

	Iteration 0	Iteration 1	Iteration 2	PageRank at iter 2
A	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{8} = 0.375$	1
В	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{5}{16} = 0.3125$	2
С	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8} = 0.125$	4
D	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16} = 0.1875$	3

Running Time: O(n + m)

n: number of nodes, m: number of edges

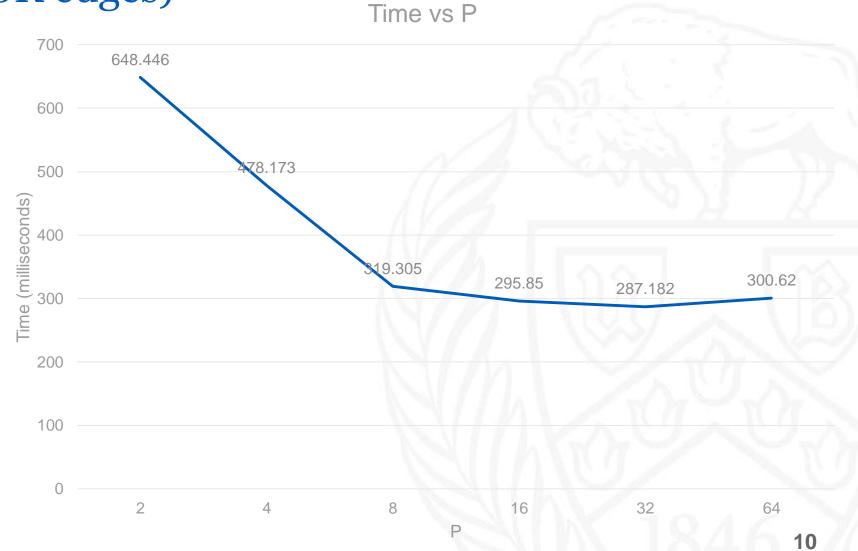
Parallel Implementation

- Consider N pages (or nodes) and P processors.
- Each processor selects its own portion of the adjacency matrix (of N/P nodes) that it will work on.
- For iteration 0, a pagerank vector for N pages with each page having 1/N as value, is computed for all the nodes across all the P processors.
- Each processor then calculates an array of the number of connections for each of its set of nodes.
- The pagerank values of each of these nodes are divided by the number of incoming connections to get the weights of each node.
- The weights array is send to all the others nodes in its neighborhood.
- By summing up the received weights, the tentative page ranks are calculated for each node.
- This process is repeated for 40 iterations to get the pagerank of all the pages.
- At the end, each processor will hold the tentative page rank value for its set of pages.

RESULTS

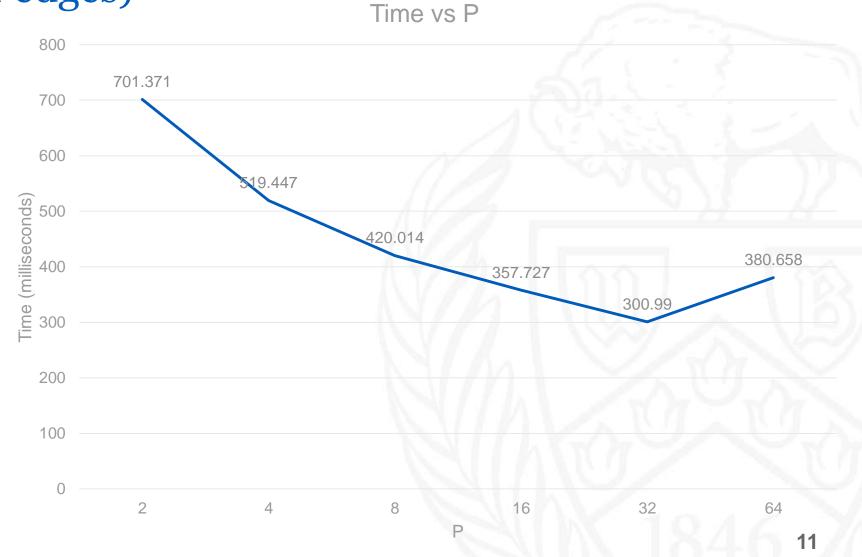
32415 nodes (~200K edges)

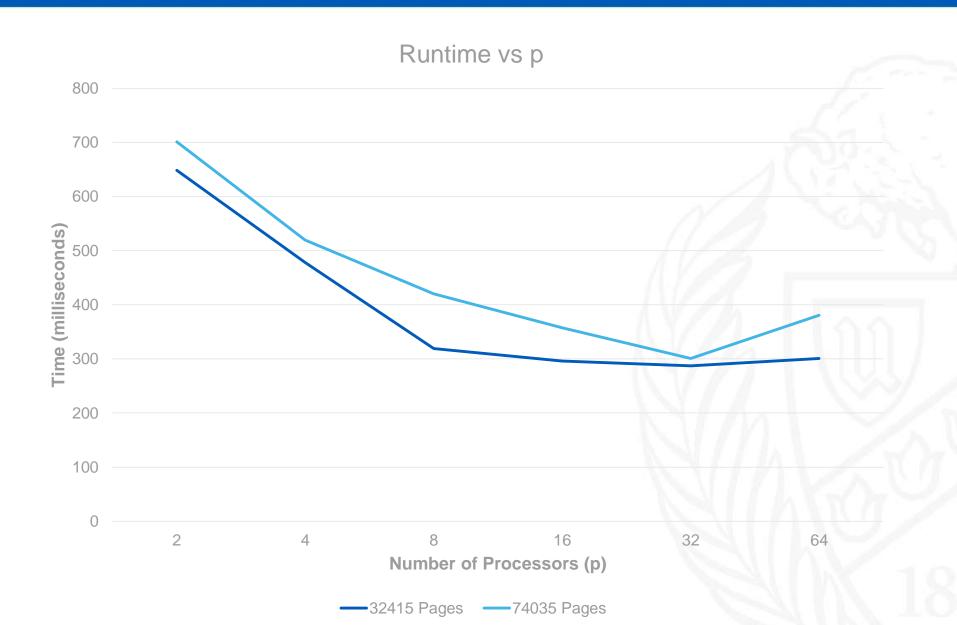
Р	Time(ms)
2	648.446
4	478.173
8	319.305
16	295.85
32	287.182
64	300.62



74035 nodes (~1M edges)

Р	Time(ms)
2	701.371
4	519.447
8	420.014
16	357.727
32	300.99
64	380.658





Observations

- The run time decreases with an increase in the number of processing units.
- When the number of processors is increased beyond 40-50, the runtime starts increasing.
- Thus, the decrease in runtime or increase in speedup is determined by both the computations and the communications across the processors.
- For lower number of processors, computations triumph over communication.
- For higher number of processors, communication plays the major role and thus, the performance starts decreasing.

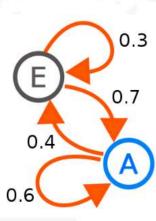
Convergence of PageRank

- Random Surfer Model
- Ergodic Markov Chains converge to a stationary distribution.

What is a Markov Chain?

- Stochastic Model
- Probability of an event depends only on the state attained in the previous event.
- Real world example: Weather forecast

Ergodic Markov Chain: Irreducible and Aperiodic Markov Chain



Convergence of PageRank - Continued

Ergodic Markov Chain:

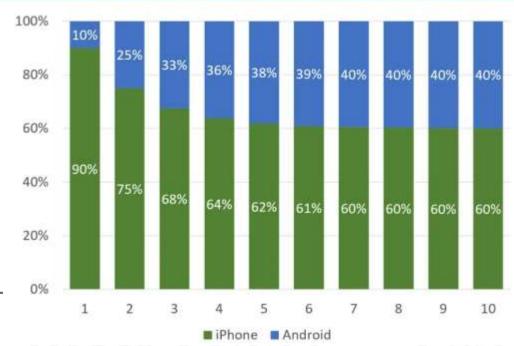
- Irreducible able to get from any state to any other state eventually.
- Aperiodic not cycling back and forth between states at regular intervals.

Such Ergodic Markov Chains eventually converge to a steadystate equilibrium (stationary distribution).

Example: User distribution with 90% iPhone users and 10% Android users.

iPhone: 80% stay with iPhone(72), 20% switch to Android(18)

Android: 70% stay with Android(7), 30% switch to iPhone(3)



Why PageRank is an Ergodic Markov Chain?

PageRank is both Irreducible and Aperiodic.

<u>Irreducible</u> because we can reach any page from any other page following a series of state transitions. (A row filled with zeros (or a sink) in the state transition matrix is replaced with 1/n probability, ie, random website is chosen)

<u>Aperiodic</u> because every diagonal element in the transition matrix T is positive because of including the damping factor.

T => transition matrix

 $\beta = >$ damping factor

N => total number of pages

$$\Gamma = \beta \begin{pmatrix} l(u_1, u_1) & l(u_1, u_2) & \dots & l(u_1, u_N) \\ l(u_2, u_1) & l(u_2, u_2) & \dots & \dots \\ \dots & \dots & \dots & \dots \\ l(u_n, u_1) & \dots & \dots & l(u_n, u_n) \end{pmatrix} + \begin{pmatrix} \frac{(1-\beta)}{N} & \frac{(1-\beta)}{N} & \dots & \frac{(1-\beta)}{N} \\ \dots & \dots & \dots & \dots \\ \frac{(1-\beta)}{N} & \dots & \dots & \frac{(1-\beta)}{N} \end{pmatrix}$$

Thus, PageRank following an Ergodic Markov Chain always converges.

REFERENCES:

- https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202015%20-%20prbeyond.pdf
- https://blog.majestic.com/company/understanding-googles-algorithm-how-pagerank-works/
- https://www.shoutmeloud.com/how-to-calculate-pagerank-google-seo.html
- https://cklixx.people.wm.edu/teaching/math410/google-pagerank.pdf
- https://snap.stanford.edu/data/
- https://towardsdatascience.com/the-intuition-behind-markov-chains-713e6ec6ce92
- https://en.wikipedia.org/wiki/Markov_chain

Questions?

