
‘-

1

CSE 702: Seminar on Programming Massively Parallel Systems

Course Instructor: 
Dr. Russ Miller
UB Distinguished Professor
Department of Computer Science & Engineering 
State University of New York at Buffalo

Prepared By:
Swati Nair
UB Person Number: 50246994

Parallel Merge Sort Using MPI



‘-

2

Agenda
● Sequential Merge Sort

● Sequential Algorithm Analysis

● Proposed parallel algorithm

● Experimentation in CCR

● Obtained results and analysis

● Challenges

● Learning from the course

● Conclusion

● References



‘-

3

mergesort(int[] a, int left, int right)
1. If the input sequence has fewer than two elements, 
return
2. Partition the input sequence into two halves: mid = 
(left + right)/ 2
3. Sort the two subsequences using the same 
algorithm:
mergesort(a, left, mid-1)
mergesort(a,mid,right)
4. Merge the two sorted subsequences to form the 
output sequence

Sequential Merge Sort

Runtime: O(Nlog N)



‘-

4

Sequential Algorithm Analysis:

Data Size Time taken by 
recursive solution

1000 0.001869

10000 0.175596

100000 17.789284

200000 73.883391

1000000 
(1M)

4963.379900

Time in seconds



‘-

5

1. To compute rank of right child: myRank | (1<<(myHeight-1))
2. To compute rank of parent: myRank & ~(1<<myHeight) => Needed to send the sorted data to 

parent node 

Proposed Parallel Algorithm
Level = 3; Right child: 0 | 1<<2 

Level = 2; Right child : 4 | 1<<1 

Level = 1; Right child : 4 | 1<<1

Level = 0



‘-

6

1. Node with rank 0 is the host node. It computes the height of the node and get the entire dataset

2. Node 0 initiates the parallel merge operation

3. For internal nodes (height > 0) including node 0, 

a. Divide the data in half and send the right half to the right child as computed in 
previous slide

b. Recursively call parallel merge operation for the left half on the same node
c. Also, receive the sorted data from right child
d. Merge the sorted left and right halves

4. If it is a leaf node, just do internal sorting

5. If parent’s rank <> node’s rank, send the sorted data to parent node

6. Finally, node 0 will have the entire sorted result

Proposed Parallel Algorithm



‘-

7

1. Allocation of nodes using salloc/sbatch script:

salloc --nodes=8 --ntasks-per-node=1 --time=00:30:00 --exclusive

Batch Script (in next slide)

2. Monitoring of submitted jobs:

squeue -u swatishr

3. To check node availability

sinfo

Experimentation in CCR



‘-

8

Experimentation in CCR: SBATCH script



‘-

9

1. For some data size, plot processing time vs number of nodes

a. Tested on 9 different data sizes: 100000, 200000, 1M, 2M, 4M, 8M, 100M, 

200M, 1 billion (showing results for few of them)

b. Number of nodes: 2, 4, 8, 16, 32, 64, 128, 256
2. Plot speed-up that shows performance of parallel over sequential

3. Plot graphs that depict for a particular number of processor, how the runtime is affected with 

data size

Results



‘-

10

Runtime Vs Number of nodes for N = 100000

Data Size: 100000

Processors Time

2 0.027800

4 0.011632

8 0.009468

16 0.008330

32 0.007679

64 0.007830

128 0.006931

256 0.007143



‘-

11

Runtime Vs Number of nodes for N = 1 million

Key Size: 1000000 (1 million)

Processors Time

2 0.154900

4 0.100955

8 0.074639

16 0.062747

32 0.053992

64 0.050502

128 0.046206

256 0.047069



‘-

12

Runtime Vs Number of nodes for N = 2 million

Key Size: 2000000 (2 million)

Processors Time

2 0.316157

4 0.195291

8 0.139053

16 0.114699

32 0.096136

64 0.087273

128 0.083914

256 0.091789



‘-

13

Runtime Vs Number of nodes for N = 8 million

Key Size: 8000000 (8 million)

Processors Time

2 1.374457

4 0.824450

8 0.563136

16 0.454040

32 0.356974

64 0.326099

128 0.311515

256 0.360204



‘-

14

Runtime Vs Number of nodes for N = 200 million

Key Size: 200000000 (200 million)

Processors Time

2 27.812386

4 17.753978

8 12.595132

16 11.473544

32 9.268599

64 9.226259

128 8.909778

256 10.424679



‘-

15

Runtime Vs Number of nodes for N = 1 billion

Key Size: 1000000000 (1 billion) 

Processors Time

2 161.343157

4 96.306835

8 72.752683

16 67.765338

32 68.262727

64 68.336235

128 66.149395

256 75.171655



‘-

16

Speedup: Ratio of sequential to parallel execution time



‘-

17

Speedup for N = 100000 Baseline:
Runtime on 1 node (Sequential): 0.028825 sec

Key Size: 100000

Processors Speedup

2 1.0368

4 2.478

8 3.0444

16 3.4603

32 3.7537

64 3.6813

128 4.1588

256 4.0354



‘-

18

Speedup for N = 8 million Baseline:
Runtime on 1 node (Sequential): 2.331913 sec

Key Size: 8 million

Processors Speedup

2 1.6966

4 2.8284

8 4.1409

16 5.1359

32 6.5324

64 7.1509

128 7.4857

256 6.4738



‘-

19

Runtime Vs Data size 
(keeping number of processors constant)



‘-

20

Runtime Vs Data size for P = 2 and 256

Data size
Time for 2 
Processors

Time for 256 
Processors

100000 0.0278 0.007143

200000 0.0291 0.01118

1000000 0.1549 0.047069

2000000 0.316157 0.091789

4000000 0.660208 0.181232

8000000 1.374457 0.360204

100000000 19.288978 4.784959

200000000 27.812386 10.424679

1000000000 161.343157 75.171655



‘-

21

● Long time to provision 128 and 256 nodes

● Analyzed the difference in runtimes as the number of nodes increased or as the data size 

increases

● Understood where parallelization should be used and how it can speed up the performance 

of sequential algorithms. 

● Knowledge on MPI, CCR and Slurm jobs

● Use of different SLURM jobs such as sinfo, squeue, srun and salloc while troubleshooting 

node allocation.

Challenges & Learnings



‘-

22

● Only one task was associated with each node, thus, every physical server initiated 

one process only.

● According to the results, parallelism can be efficient only upto a particular number of 

processors/nodes.

● For further addition of nodes, network latency and/or size of smallest chunk of data 

hampers the performance!

Conclusion



‘-

23

● Dr. Russ Miller’s webpage: 
https://cse.buffalo.edu/faculty/miller/teaching.shtml

● Parallel Merge sort: https://www.mcs.anl.gov/~itf/dbpp/text/node127.html

● http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMerge.html

References

https://www.mcs.anl.gov/~itf/dbpp/text/node127.html
http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMerge.html


‘-

24

Thank you


