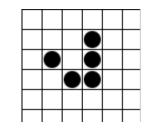
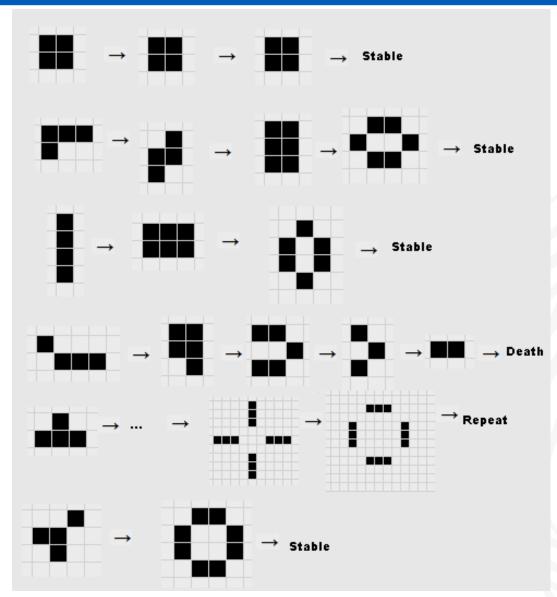
CONWAY'S GAME OF LIFE

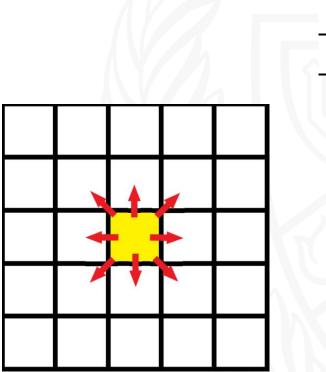
CSE708


Varun Sudarshan

University at Buffalo The State University of New York


Game of Life

- You start with a pre-set pattern
- There are certain rules that define how the pattern evolves
 - Check for Overcrowding
 - Check for Loneliness
 - Check for New life

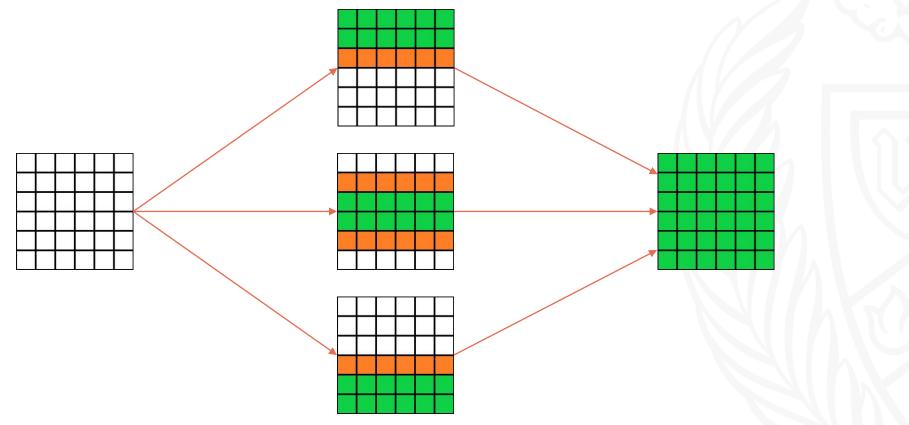


Algorithm

- 1. Any live cell with two or three live neighbors survives.
- 2. Any dead cell with three live neighbors becomes a live cell.
- 3. All other live cells die in the next generation. Similarly, all other dead cells stay dead.

On a sequential processor, we would traverse across the grid, look at the neighbours of each cell and apply the 3 rules, one by one, to each cell

Each cell of the matrix is dependent on its 8 immediate neighboring cells.


Parallel Implementation

- We decide how much data each processor takes based on the number of nodes available
- We divide the grid into smaller chunks
- To equally divide the data among all the processors, we divide the grid into (grid size/No. of processors) sized sub-grids
- For each sub-grid, we run the algorithm sequentially and pass the data back to the root node

Parallel Implementation

Since the state of a cell is dependent on the immediate neighbors, we need to send the first and the last rows of a sub-grid to its previous and next node respectively

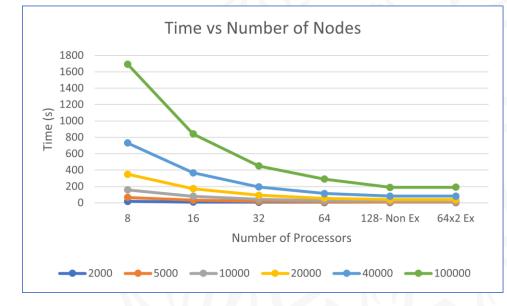
Threads and Thread Blocks- CUDA

- Conceptually, the division of data and the computation of each check sequentially remains the same
- To implement this in CUDA, we use threads and a kernel function.
- This Kernel function is executed in each thread.
- A group of threads is known as a Thread Block in the CUDA world
- The distinction between which part of the data you are operating on is made based on a combination of Block ID and Thread ID which is accessible by each instance of the Kernel function (ie. Thread)

Low level execution

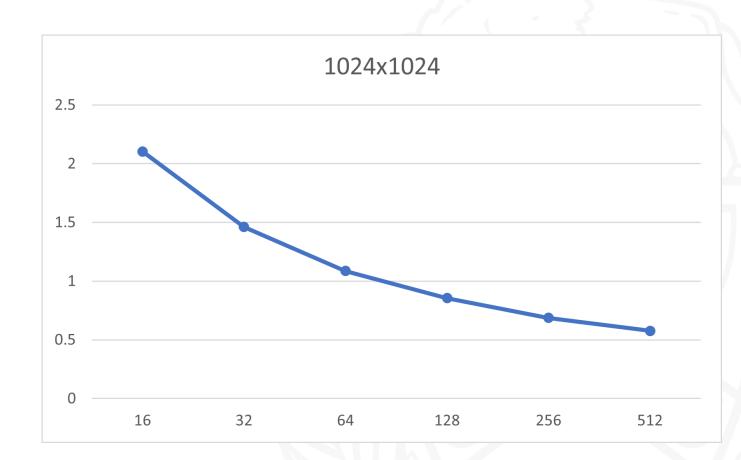
- Streaming Multiprocessors : General purpose processors that picks up a new thread block when the previous block's execution is complete.
- Warps : a thread block is composed of 'warps'. A warp is a set of 32 threads within a thread block such that all the threads in a warp execute the same instruction.
- Compared to a general purpose instruction computation, this method is more efficient as the overhead for changing out the instruction is removed and the only change that happens is which memory the instruction acts upon.

Speed-up

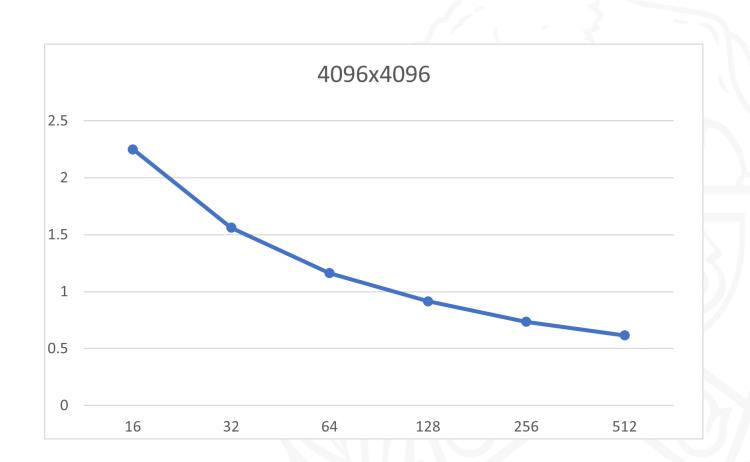

MPI

- For one 64x64 grid, 10000 Generations : ~40 seconds
 CUDA
- For one 64x64 grid, 1000000 Generations : 71 milliseconds (0.071 s)

Results (old)

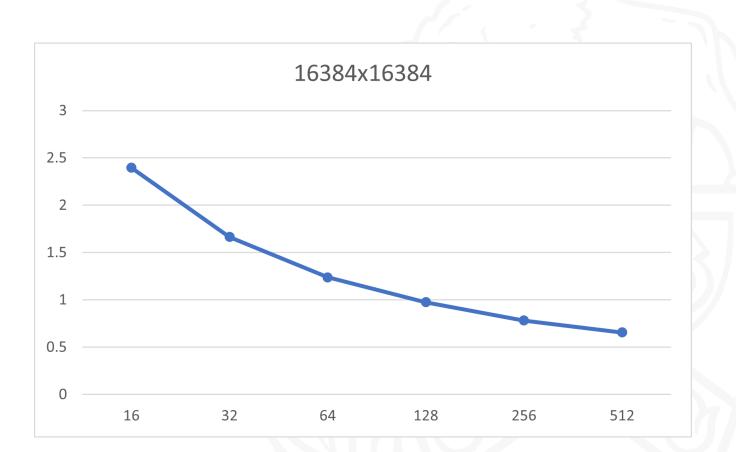

1024x1024					128- Non	
Grid	8	16	32	64	Ex	64x2 Ex
2000	18.7678	9.34687	5.0574	3.18806	2.1716	2.2391
5000	46.601	23.4859	12.9617	7.34906	5.45177	5.4423
10000	93.2208	46.7425	25.5975	14.8146	10.7789	10.906
20000	190.405	93.0172	49.9057	29.3662	21.5298	21.725
40000	381.589	194.962	99.8908	59.4824	42.191	42.717
100000	962.487	473.983	256.136	175.659	106.927	108.07

Nodes


1024 x 1024 Grid

Threads		Time (s)	
	16		2.103825
	32		1.461213
	64		1.087408
	128		0.856166
	256		0.686833
	512		0.576121

4096 x 4096Grid


Threads	Time	(s)
	16	2.249718
	32	1.562543
	64	1.162816
1	.28	0.915539
2	256	0.734462
5	512	0.616073

16384 x 16384 Grid

Threads	Time ((s)
	16	2.395611
	32	1.663873
	64	1.238224
1	L28	0.974911
	256	0.782092
Į.	512	0.656025

Thank You