
CONWAY’S GAME 
OF LIFE

CSE708

Varun Sudarshan



Game of Life 

• Check for Overcrowding

• Check for Loneliness

• Check for New life

2

• You start with a pre-set pattern

• There are certain rules that define how the 
pattern evolves



3
http://pi.math.cornell.edu/~lipa/mec/lesson6.html



Algorithm

4

Let and

1.Any live cell with two or three live 
neighbors survives.

2.Any dead cell with three live neighbors 
becomes a live cell.

3.All other live cells die in the next 
generation. Similarly, all other dead cells 
stay dead.

On a sequential processor, we would traverse 

across the grid, look at the neighbours of each cell 

and apply the 3 rules, one by one, to each cell 

Each cell of the matrix is dependent on its 8 

immediate neighboring cells.



Parallel Implementation

• We decide how much data each processor takes based on the 

number of nodes available

• We divide the grid into smaller chunks

• To equally divide the data among all the processors, we divide 

the grid into (grid size/No. of processors) sized sub-grids

• For each sub-grid, we run the algorithm sequentially and pass 

the data back to the root node 

5



Parallel Implementation

6

Since the state of a cell is dependent on the immediate neighbors, 

we need to send the first and the last rows of a sub-grid to its previous and next node respectively



Threads and Thread Blocks- CUDA

• Conceptually, the division of data and the computation of each

check sequentially remains the same

• To implement this in CUDA, we use threads and a kernel function.

• This Kernel function is executed in each thread.

• A group of threads is known as a Thread Block in the CUDA world

• The distinction between which part of the data you are operating

on is made based on a combination of Block ID and Thread ID

which is accessible by each instance of the Kernel function (ie.

Thread)

7



Low level execution

• Streaming Multiprocessors : General purpose processors that 

picks up a new thread block when the previous block’s execution 

is complete.

• Warps : a thread block is composed of ‘warps’. A warp is a set of 

32 threads within a thread block such that all the threads in a 

warp execute the same instruction.

• Compared to a general purpose instruction computation, this 

method is more efficient as the overhead for changing out the 

instruction is removed and the only change that happens is 

which memory the instruction acts upon.

8



Speed-up

MPI

• For one 64x64 grid, 10000 Generations : ~40 seconds

CUDA

• For one 64x64 grid, 1000000 Generations : 71 milliseconds (0.071 s)

9



Results (old)

10

Nodes

G
e
n
e
ra

ti
o
n
s

1024x1024 

Grid 8 16 32 64

128- Non 

Ex 64x2 Ex

2000 18.7678 9.34687 5.0574 3.18806 2.1716 2.23913

5000 46.601 23.4859 12.9617 7.34906 5.45177 5.44231

10000 93.2208 46.7425 25.5975 14.8146 10.7789 10.9067

20000 190.405 93.0172 49.9057 29.3662 21.5298 21.7252

40000 381.589 194.962 99.8908 59.4824 42.191 42.7178

100000 962.487 473.983 256.136 175.659 106.927 108.071



1024 x 1024 Grid

Threads Time (s)

16 2.103825

32 1.461213

64 1.087408

128 0.856166

256 0.686833

512 0.576121

11



4096 x 4096Grid

Threads Time (s)

16 2.249718

32 1.562543

64 1.162816

128 0.915539

256 0.734462

512 0.616073

12



16384 x 16384 Grid

Threads Time (s)

16 2.395611

32 1.663873

64 1.238224

128 0.974911

256 0.782092

512 0.656025

13



14



Thank You

15


	Slide 1: Conway’s Game of life
	Slide 2: Game of Life 
	Slide 3
	Slide 4: Algorithm
	Slide 5: Parallel Implementation
	Slide 6: Parallel Implementation
	Slide 7: Threads and Thread Blocks- CUDA
	Slide 8: Low level execution
	Slide 9: Speed-up
	Slide 10: Results (old)
	Slide 11: 1024 x 1024 Grid
	Slide 12: 4096 x 4096Grid
	Slide 13: 16384 x 16384 Grid
	Slide 14
	Slide 15: Thank You

