
PARALLEL BREADTH
FIRST SEARCH
USING MPI

Course: CSE 708

Presenter: Venkata Bala Vamsi

Instructor: Dr. Russ Miller

CONTENTS:

• 1. Overview of BFS

• 2. Applications of BFS

• 3. Sequential Approach to BFS

• 4. The Necessity of Parallelization

• 5. Parallel Implementation of BFS

• 6. Results

Overview of BFS

• Given a source node, BFS performs a Level Order

traversal of the graph with respect to the source

node.

• Explores all the vertices in the current level before

moving on to exploring vertices in the next level.

3

Breadth First Search or BFS
for a Graph

BFS Traversal: S A B C D

Applications of BFS

1. Shortest Path

2. Cycle Detection

3. Finding connected components

4. Network Broadcast

4

Sequential approach to BFS

5

The Necessity of Parallelization

• Memory Constraints: Large Graphs can exceed memory capacity of a single processor.

• High Computational Demand: BFS is computationally intensive because it explores each vertex

and edge of the graph.

6

High level Parallel Implementation:

7

Sequential Implementation:

Graph nodes are distributed evenly across the

available processors.

Each Processor maintains its own:

• Local adjacency list, which corresponds to the

subset of vertices it is responsible for.

• Vertex levels, specifically for the vertices it

owns, denoting their distances from the source

vertex.
• Current frontier, which is a list of vertices it

owns that are to be explored at the current level

of the algorithm.

• Next frontier, which comprises the vertices it

owns that will be explored in the subsequent
level of the algorithm.

Processor 0:

Levels = { 0: -1, 1: -1, 2: -1}

FS = {0}

ALL to ALL communication

Levels = { 0: 0, 1: -1, 2: -1}

FS = {1}

ALL to ALL communication

Levels = { 0: 0, 1: 1, 2: -1}

FS = {2}

ALL to ALL communication

Levels = { 0: 0, 1: 1, 2: 2}

FS = {}

ALL to ALL communication

Levels = { 0: 0, 1: 1, 2: 2}

FS = {}

ALL to ALL communication

Levels = { 0: 0, 1: 1, 2: 2}

FS = {}

Processor 1:

Levels = {3: -1, 4: -1, 5: -1}

FS = {}

ALL to ALL communication

Levels = {3: -1, 4: -1, 5: -1}

FS = {3}

ALL to ALL communication

Levels = {3: 1, 4: -1, 5: -1}

FS = {5}

ALL to ALL communication

Levels = {3: 1, 4: -1, 5: 2}

FS = {4}

ALL to ALL communication

Levels = {3: 1, 4: 3, 5: 2}

FS = {}

ALL to ALL communication

Levels = {3: 1, 4: 3, 5: 2}

FS = {}

Processor 2:

Levels = {6: -1, 7: -1, 8: -1}

FS = {}

ALL to ALL communication

Levels = {6: -1, 7: -1, 8: -1}

FS = {}

ALL to ALL communication

Levels = {6: -1, 7: -1, 8: -1}

FS = {6}

ALL to ALL communication

Levels = {6: 2, 7: -1, 8: -1}

FS = {8}

ALL to ALL communication

Levels = {6: 2, 7: -1, 8: 3}

FS = {7}

ALL to ALL communication

Levels = {6: 2, 7: 4, 8: 3}

FS = {}

10

Slurm.sh:

Results for 5120 sparse graph vertices

11

1 task per node
Speedup = Sequential Time / Parallel Execution Time

S

Results for 7520 sparse graph vertices

1 task per node Speedup = Sequential Time / Parallel Execution Time

13

References:

• https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf [Parallel Breadth-First Search on Distributed

Memory Systems]

• https://www.youtube.com/watch?v=wpWvCabHqQU [Distributed BFS Algorithm, IIT Delhi July
2018]

• https://docs.ccr.buffalo.edu/en/latest/

• https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-
documents

https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://www.youtube.com/watch?v=wpWvCabHqQU
https://docs.ccr.buffalo.edu/en/latest/
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents

Thank You. Questions?

14

	Slide 1: Parallel Breadth First Search Using MPI
	Slide 2: Contents:
	Slide 3: Overview of BFS
	Slide 4: Applications of BFS
	Slide 5: Sequential approach to BFS
	Slide 6: The Necessity of Parallelization
	Slide 7: High level Parallel Implementation:
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Results for 5120 sparse graph vertices
	Slide 12: Results for 7520 sparse graph vertices
	Slide 13:
	Slide 14: Thank You. Questions?

