
‘-

1

Implementing Parallel Prefix Minima 
using Message Passing Interface

CSE 702: SEMINAR ON 

PROGRAMMING MASSIVELY 

PARALLEL SYSTEMS



‘-

2

PREPARED BY: 

VIJAYA HARSHAVARDHAN PALLA

(UB PERSON NUMBER: 50246589)

UNDER THE GUIDANCE OF:

PROF. DR. RUSS MILLER

SUNY DISTINGUISHED PROFESSOR, DEPARTMENT 

OF COMPUTER SCIENCE AND ENGINEERING, 

UNIVERSITY AT BUFFALO (SUNY)



‘-

3

• What is parallel prefix?

• Parallel Prefix Minima

• Sequential Algorithm

• Parallel Algorithm

• Snapshot of the Parallel Algorithm implemented

• Processors vs Time for fixed data size in each processor

• Processors vs Time for small total data size

• Processors vs Time for a large total data size

• What I learnt!

• References

Agenda



‘-

4

The parallel execution of an operation that is defined by a 
recurrence involving an associative operator.

For e.g: 

If there is an Array ‘A’ with n elements in it then the parallel prefix 
at Ai is defined as:

Ai = A1⊕A2⊕……. Ai-1⊕Ai

Here, ⊕ is any operation like Sum, Minima, Maxima, Product, 
etc.

What is parallel prefix?



‘-

5

• If we replace ⊕ with a minima operation in the previous slide, it gives us 
Parallel Prefix Minima.

• This will let us know at any given element, what is the minimum of the array till 
the given element.

Parallel Prefix Minima



‘-

6

Given an array A of n elements
• Go through each element in a sequential order
• Find parallel prefix at each element by finding the minima between the 

element and the parallel prefix of the element before it
• Runtime: Θ (n) n: No of elements in an array

Sequential Algorithm



‘-

7

Parallel Algorithm

• It can be seen in the previous slide that the runtime of the algorithm is 
equivalent to the number of elements in the array

• We can get it better by implementing the algorithm in parallel which gives 
the base to the following algorithm

For better understanding I am going to consider there are n processors and 
each processor gets one element.

P1, P2, P3, P4,……. Pn-1,Pn

P1 stores n1, P2 stores n2 and so on..



‘-

8

Parallel Algorithm contd..

• Following algorithm is used to implement parallel prefix minima in log(n) 
steps where n is no. of processors participating.

for j=0 to log(n)-1 do

for i=2^j to n-1 in parallel do

A[i]=min(A[i],A[i-2^j])

• Here A[i] is the element present in the processor ‘i’

• Second for loop runs in parallel and takes θ(1) time

• Hence total time taken is θ(logn)



‘-

9

Parallel Algorithm contd..

• It is not idealistic to have one processor for each element as it is going to be 
costly.

• So, we consider p processors and each processor get n/p elements.

Parallel prefix is calculated in three main steps:

1. Pre-processing

Every processor simultaneously and in parallel finds out parallel prefix for n/p 
elements.

2. Processing

In this step, parallel prefix of all the last elements in each processor (Total p 
elements and p processors) is calculated using the algorithm mentioned in the 
earlier slide in Θ(Log(p)) time



‘-

10

Parallel Algorithm contd..

3. Post processing
Each processors’ last element has the correct prefix value whereas other 
elements in any given processor are missing one value to find their ultimate 
prefix value. This one value is the prefix value of the last element of the 
processor before it.

So, every processor sends it last elements prefix value to its next processor 
simultaneously

Each processor runs parallel prefix with the received value across all elements.

Now, we have reached the end where parallel prefix at each element has been 
found out.



‘-

11

Snapshot of the Parallel Algorithm implemented



‘-

12

Processors vs Time for fixed data size in each processor

Processors Time (In Seconds)

1 0.0115

2 0.032784

4 0.088401

8 0.177595

16 0.419077

32 0.851107

64 2.05456
0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
Tm

e 
ta

ke
n

Processors

Processors vs Time for data of 1 million in 
each processor



‘-

13

Processors vs Time for small total data size (640000)

Processors Time (In Seconds)

2 0.005823

4 0.003833

8 0.002064

16 0.001563

32 0.010316

64 0.0183

128 0.023428

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100 120 140

Ti
m

e 
ta

ke
n

Processors

Processors vs Time taken for total 
data size of 640,000



‘-

14

Processors vs Time for large total data size (64 Million)

Processors Time (In Seconds)

1 0.48615

2 0.542148

4 0.32567

8 0.130272

16 0.08345

32 0.03801

64 0.023948

128 0.025

256 0.027382

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300
Ti

m
e 

in
 S

ec
on

ds
Processors

Processors vs time for Datasize of 
64 Million



‘-

15

Speedup

Wikipedia Definition:

In computer architecture, speedup is a number that measures the relative performance of two 
systems processing the same problem. More technically, it is the improvement in speed of 
execution of a task executed on two similar architectures with different resources. The notion of 
speedup was established by Amdahl's law, which was particularly focused on parallel processing. 
However, speedup can be used more generally to show the effect on performance after any 
resource enhancement.

So, the formula used for calculating speed up is Time taken by one processor divided by time 
taken by two or more processors.

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Parallel_computing


‘-

16

Speed Up Analysis

Processors Speedup Factor

1 1

2 0.9

4 1.5

8 3.74

16 6.1

32 12.46

64 21.13

128 19.8

256 18
0

5

10

15

20

25

0 50 100 150 200 250 300

Sp
ee

cu
p 

Fa
ct

or

Processors

Processors vs Speedup Factor



‘-

17

What I have learnt!

• How to use Message passing interface model to communicate across processors to implement 
algorithm in parallel

• Depending on the data one needs to choose if increasing total processors is a wise thing or not

• Increasing processors is not always directly proportional to reduction in the time taken to 
complete the task



‘-

18

References

http://www2.hawaii.edu/~nodari/teaching/f17/notes/notes06.pdf
http://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf

https://buffalo.app.box.com/s/vb6lkxg72jgekuyo5xbps7xesfj076ok
https://en.wikipedia.org/wiki/Speedup

http://www2.hawaii.edu/~nodari/teaching/f17/notes/notes06.pdf
http://www.cs.princeton.edu/courses/archive/fall13/cos326/lec/23-parallel-scan.pdf
https://buffalo.app.box.com/s/vb6lkxg72jgekuyo5xbps7xesfj076ok
https://en.wikipedia.org/wiki/Speedup


‘-

19

THANK YOU 


