\
4 \\ LN
4 N
QQ 7 . N
A Sy \\(___~ ;
’
54 NQ 200N O ¢
(N
’ b S (o] ’
(o} “ ’ N . ¢
/ ~ N ’
4 / . -~
4 1 .~
\ 1 N
N ] S
~ N
AN \ N
N \ N
N N S
LN S S
LN A3 S
N SN \\
iy LS LN
Q ¥ \\
\
. Y .
\
N ’
N ’
L8 ’
LN
LS ’
LS .
N ’

Vinay Vardhaman N

CSE 702: Programming Massively
Parallel Systems

Instructor: Prof. Dr. Russ Miller

% University at Buffalo The State University of New York i




% University at Buffalo The State University of New York

Agenda

* OQOverview of Parallel Algorithm

* Modified Hyper Quick Sort Algorithm
* Working Example

* Results on Small Data

* Results on Big Data

* Speedups for different data

* Learnings

* References



% University at Buffalo The State University of New York

Algorithm

We randomly choose a pivot from one of the processers and broadcast it to every
processor.

Each processor divide its unsorted list into two lists: those smaller than (or equal) the
pivot, those greater than the pivot.

Each processor in the upper half of the processor list sends its “low list” to a partner
processor in the lower half of the processor list and receives a “high list” in return.

Now, the upper-half processors have only values greater than The pivot, and the
lower-half processors have only values smaller than the pivot.

Thereafter, the processors divide themselves into two groups and the algorithm
continues recursively.

After log(P) recursions, every processor has an unsorted list of values completely
disjoint from the values held by the other processers.

The largest value on processor i will be smaller than the smallest value held by
processori+ 1

Each processor can sort its list using sequential quicksort.



% University at Buffalo The State University of New York

Modified Algorithm

* Each processor starts with a sequential quicksort on its local list
* Now we have a better chance to choose a pivot that is close to the true median.

* The processor that is responsible for choosing the pivot can pick the median of its
local list.

The three next steps of hyper quick sort are the same as in parallel algorithm 1.
* Broadcast
* Division of “low list” and high list”

* Swap between partner processors

The next step is different in hyper quick sort.

* On each processor, the remaining half of local list and the received half-list are
merged into a sorted local list.

* Recursion within upper-half processors and lower-half processors.



% University at Buffalo The State University of New York

Example

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18



% University at Buffalo The State University of New York

Example

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18



% University at Buffalo The State University of New York

Example

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18

1,3,5,8,10 | 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19



% University at Buffalo The State University of New York

Example

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18
1,3,5,8,10 | 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19

1,3,5,8,10 | 2,4,6,7,9 ||| 12,13,15,17,20 || 11,14,16,18,19

N
N
N
\\
8 x
¢ \\
z’ LY
¢



% University at Buffalo The State University of New York

Example

1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18
1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18
1,3,5,8,10| 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19
1,3,5,8,10| 2,4,6,7,9 ||| 12,13,15,17,20 || 11,14,16,18,19

1,2,3,4,5(6,7,8,9,10|| 11,12,13,14,15 || 16,17,18,19,20

N
N
N
\\
9 «
¢ \\
z’ LY
¢



% University at Buffalo The State University of New York

‘o)
OBSERVATIONS

Small Data (100k)
Number of Execution
e
2 5.1 £
4 4.7 T

£
8 2.9 £
16 1.9 R
32 2.3 1
64 32 ’ o] 20 40 60 80 100 120 140
Processors
128 8.3
10 K e



% University at Buffalo The State University of New York

OBSERVATIONS
Large Data (10 Million)

Number of Execution
Processors Time (msec)

2 473
4 452
8 340 :
16 185 E
32 125
64 94
128 85

Processors



% University at Buffalo The State University of New York

OBSERVATIONS SPEED UP
Small Data (100k)

Number of Speedup
Processors

2 470 SpeedUp
4 4.89

8 8.27

16 12.63

32 10.43

64 7.5

128 2.89




% University at Buffalo The State University of New York

OBSERVATIONS
Large Data (10 Million)

Number of SpeedUp
Processors

2 3.17 SpeedUp
4 3.31

8 4.41

16 8.16

32 1513

64 15.95

128 17.64



% University at Buffalo The State University of New York

Learnings

* Implementation of parallel algorithm using Message Passing Interface

* Observed the difference in runtimes for different number of processors. As
the no of processors increase runtime decrease up to certain level and then

decrease.
* Its always better to limit the number of processors to get maximum speedup



% University at Buffalo The State University of New York

O
References

http://www.cas.mcmaster.ca/~nedialk/ COURSES/4f03/Lectures/quicksort.pdf
http://parallelcomp.uw.hu/ch09levlsec4.html
https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/in
f3380-week12.pdf

Q\

15 « b


http://www.cas.mcmaster.ca/~nedialk/COURSES/4f03/Lectures/quicksort.pdf
http://parallelcomp.uw.hu/ch09lev1sec4.html
https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/inf3380-week12.pdf

i LN
£ AN
27 o ¥
’ > s
Q 7 \\
N
S S e
4 N \(d = b4
’
s N oD ° v
N
’ ) \ Q /
(o} ’ N . ¢
’ I} [N S /’
p2 . -~
V4 1 .~
\ 1 N
\\ ] \\
(N \ \
S \ »
AN S S
N S N
N . b
N B¢ N
By LN N
Q N s
LN
. b4 LS
LN
LN .
LN ’
LN ’
LN
LN ’
AN .
LN ’
AN ’
AN
AN ’
N v
Nz -

% University at Buffalo The State University of New York



