PARALLEL
PROGRAM FOR
IMAGE CLONING

CUDA Programming Approach
Presenter: Yan Shen

Instructor: Dr. Russ Miller
University at Buffalo

-(é University at Buffalo The State University of New York

-(ﬁ University at Buffalo The state University of New York

OUTLINE

* Problem Statement

« Algorithm Design

e Source Availability

* Implementation Work Flow
« Performance Analysis

« Conclusion

-(é University at Buffalo The state University of New York

Image Cloning

Definition:

Seamless placing a source image patch into a
target image, which smoothly interpolates the
discrepancies between the boundary of source
patch and the target across the entire cloned area.

-(é University at Buffalo The State University of New York

Image Preprocessing

Segment Source Image Patches into three type:
« Border
« Stricter interior

« Background
&~

9\1\(}
Lohe\ R

%o(éd

ln'w\')

wﬂ

-(é University at Buffalo The state University of New York

Discrete Possion Solver for Guided Interpolation

_ § fr

’/‘“"1\1\ f
N0 RN
P N\
'L-..'-Px‘\‘,al

NGO,

T rra JQ
v g
« Membrane interpolation problem under a guidance field is defined as a solution to
a minimization problem

. 9 . .
min [[V£~ V> with floq = £l
f Q

Written in discrete from:

min Z (fp—Jq— qu)z, with f, = f,,.for all p € €,
fla (p.q)NQAD forall (p,q),vpq = gp — &4,
« Solution of a minimization problem satisfies the following equation:

forallpeQ, [Nplfy— Y fo= Y [fo+ X Vog
geN,NQ geN,MNIQ qeN, /

-(é University at Buffalo The state University of New York

Discrete Possion Solver for Guided Interpolation
« Solving the following Linear Equations:
*
forall pe Q, [N,|f,— Z fq = Z fq + Z Vpg-
geN,NQ geN,NIQ qeN,
for all (p,q), vpq = &p — &q>

« Jacoby Iterative Solution for Linear Equations:

sk
Z Lf(f + Z qu + Z vr}q.
1

‘N})|

for all (p,q), Vpg = 8p — 8¢q>

-(é University at Buffalo The state University of New York

GPU Resource
Hardware Spec in CCR:

Name: Tesla V100
« CUDA Version: 6.5
« Shared memory per block: 49152
« Total constant memory: 165536
 Regs per block:32768
Max threads per block: 1024
* Max threads per dim: 1024,1024,64
« Max grid size: 65535, 65535, 65535
e Multi processor count: 14

-(é University at Buffalo The state University of New York

Work Flow
CPU

Load source patch and target image

Preprocess source patch to interior
and boundary

Allocate space in GPU and copy
source patch, target image and
interior/boundary labels into GPU

Create two buffers for iteration and
copy the target image into one buffer
as initial guess

Launch a kernel for one iteration

Launch a kernel to swap memory
between two buffers

Launch a kernel for one iteration

CobnvVv back from iteration buffer

GPU

Complete one iteration in GPU

Swap memory in GPU

-(é University at Buffalo The state University of New York

Synchronization

Kernel launch lteration N

Grid

A Block 1

0

- Block 2

=

D

=
Global
mem
write

Kernel launch Iteration N+1

Grid

pealyl NdO

tﬁ University at Buffalo The state University of New York

Sbatch Script

#!/bin/bash.

#SBATCH --partition=gpu
#SBATCH --time=01:00:00
#SBATCH --gos=gpu
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --output=slurmNAMD.out
#SBATCH --job-name=cuda
module load cuda/6.5

module load python

module load opencv

srun image_cloning source.png destination.png

tﬁ University at Buffalo The State University of New York

Parallel Reduction

Average Running Time on CPU:
* 54.71ms

Average Running Time on Local GPU
« 12.78ms

Average Running Time on CCR GPU
 12.19ms

Running Time of the Program

70
60
50
40
30

20
——— e ——
10 —_——

Run Time 1 Run Time 2 RunTime3 RunTime4

e==CPU e=—Local GPU —=——CCR GPU Q

-(é University at Buffalo The state University of New York

Varying Block Size

40.12ms 35.23ms
256 22.45ms 18.17ms
512 12.19ms 10.08ms
768 8.78ms 6.98ms

-(ﬁ University at Buffalo The state University of New York

Varying Image Size

_ 500%240 1000 *960 2000%1920

12.19ms 12.31ms 20.54ms

CPU 54.71ms 218.13ms 830.12ms

Run Times

900
800
700
600
500
400
300
200
100

GPU CPU
m500*240 m 1000960 m 2000*1092

tﬁ University at Buffalo The state University of New York

Conclusions

 For pure rBathﬁmatiC%l computations, GPU offers huge
speed up by otfering huge parallelism

« Synchronization cost is a big overhead
 GPU memory is an important constrains

 Data 1/0 cost from GPU to CPU and GPU to CPU is
F‘u)lgher than Hg er%an |tntra memory /O

« Set reasonable grid and block size

-(ﬁ University at Buffalo The state University of New York

e -_H' - e
W

L

