
‘-

1

CUDA Programming Approach

Presenter: Yan Shen

Instructor: Dr. Russ Miller

University at Buffalo

PARALLEL
PROGRAM FOR
IMAGE CLONING

‘-

2

OUTLINE
• Problem Statement

• Algorithm Design

• Source Availability

• Implementation Work Flow

• Performance Analysis

• Conclusion

‘-

3

Image Cloning

Definition:

Seamless placing a source image patch into a

target image, which smoothly interpolates the

discrepancies between the boundary of source

patch and the target across the entire cloned area.

‘-

4

Segment Source Image Patches into three type:

• Border

• Stricter interior

• Background

Image Preprocessing

‘-

5

• Membrane interpolation problem under a guidance field is defined as a solution to

a minimization problem

• Written in discrete from:

• Solution of a minimization problem satisfies the following equation:

Discrete Possion Solver for Guided Interpolation

‘-

6

• Solving the following Linear Equations:

• Jacoby Iterative Solution for Linear Equations:

• Applying to our specific Problem:

Discrete Possion Solver for Guided Interpolation

‘-

7

Hardware Spec in CCR:
• Name: Tesla V100

• CUDA Version: 6.5

• Shared memory per block: 49152

• Total constant memory: 165536

• Regs per block:32768

• Max threads per block: 1024

• Max threads per dim: 1024,1024,64

• Max grid size: 65535, 65535, 65535

• Multi processor count: 14

GPU Resource

‘-

8

CPU
Load source patch and target image

Preprocess source patch to interior

and boundary

Allocate space in GPU and copy

source patch, target image and

interior/boundary labels into GPU

Create two buffers for iteration and

copy the target image into one buffer

as initial guess

Launch a kernel for one iteration

Launch a kernel to swap memory

between two buffers

Launch a kernel for one iteration

Copy back from iteration buffer

GPU

Complete one iteration in GPU

Swap memory in GPU

……

Work Flow

‘-

9

Synchronization

‘-

10

• #!/bin/bash.

• #SBATCH --partition=gpu

• #SBATCH --time=01:00:00

• #SBATCH --qos=gpu

• #SBATCH --nodes=1

• #SBATCH --ntasks-per-node=1

• #SBATCH --output=slurmNAMD.out

• #SBATCH --job-name=cuda

• module load cuda/6.5

• module load python

• module load opencv

• srun image_cloning source.png destination.png

Sbatch Script

‘-

11

Average Running Time on CPU:

• 54.71ms

Average Running Time on Local GPU

• 12.78ms

Average Running Time on CCR GPU

• 12.19ms

Parallel Reduction

0

10

20

30

40

50

60

70

Run Time 1 Run Time 2 Run Time 3 Run Time 4

Running Time of the Program

CPU Local GPU CCR GPU

‘-

12

Varying Block Size

Block Size 1 2

128 40.12ms 35.23ms

256 22.45ms 18.17ms

512 12.19ms 10.08ms

768 8.78ms 6.98ms

Grid Size

‘-

13

Varying Image Size

500*240 1000 *960 2000*1920

GPU 12.19ms 12.31ms 20.54ms

CPU 54.71ms 218.13ms 830.12ms

0

100

200

300

400

500

600

700

800

900

GPU CPU

Run Times

500*240 1000*960 2000*1092

‘-

14

• For pure mathematical computations, GPU offers huge
speed up by offering huge parallelism

• Synchronization cost is a big overhead

• GPU memory is an important constrains

• Data I/0 cost from GPU to CPU and GPU to CPU is
higher than higher than intra memory I/O

• Set reasonable grid and block size

Conclusions

‘-

15

