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Image Cloning

Definition:

Seamless placing a source image patch into a
target image, which smoothly interpolates the
discrepancies between the boundary of source
patch and the target across the entire cloned area.
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Image Preprocessing

Segment Source Image Patches into three type:
« Border
« Stricter interior

« Background
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Discrete Possion Solver for Guided Interpolation
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« Membrane interpolation problem under a guidance field is defined as a solution to
a minimization problem

. 9 . .
min [[ V£~ V> with floq = £l
f Q

Written in discrete from:

min Z (fp—Jq— qu)z, with f, = f,,.for all p € €,
fla (p.q)NQAD forall (p,q),vpq = gp — &4,
«  Solution of a minimization problem satisfies the following equation:

forallpeQ, [Nplfy— Y fo= Y [fo+ X Vog
geN,NQ geN,MNIQ qeN, /
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Discrete Possion Solver for Guided Interpolation
« Solving the following Linear Equations:
*
forall pe Q, [N,|f,— Z fq = Z fq + Z Vpg-
geN,NQ geN,NIQ qeN,
for all (p,q), vpq = &p — &q>

« Jacoby Iterative Solution for Linear Equations:
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Z Lf(f + Z qu + Z vr}q.
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for all (p,q), Vpg = 8p — 8¢q>
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GPU Resource
Hardware Spec in CCR:

Name: Tesla V100
«  CUDA Version: 6.5
«  Shared memory per block: 49152
«  Total constant memory: 165536
 Regs per block:32768
Max threads per block: 1024
*  Max threads per dim: 1024,1024,64
«  Max grid size: 65535, 65535, 65535
e Multi processor count: 14
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Work Flow
CPU

Load source patch and target image

Preprocess source patch to interior
and boundary

Allocate space in GPU and copy
source patch, target image and
interior/boundary labels into GPU

Create two buffers for iteration and
copy the target image into one buffer
as initial guess

Launch a kernel for one iteration

Launch a kernel to swap memory
between two buffers

Launch a kernel for one iteration

CobnvVv back from iteration buffer

GPU

Complete one iteration in GPU

Swap memory in GPU
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Synchronization

Kernel launch lteration N

Grid
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Sbatch Script

#!/bin/bash.

#SBATCH --partition=gpu
#SBATCH --time=01:00:00
#SBATCH --gos=gpu
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --output=slurmNAMD.out
#SBATCH --job-name=cuda
module load cuda/6.5

module load python

module load opencv

srun image_cloning source.png destination.png
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Parallel Reduction

Average Running Time on CPU:
* 54.71ms

Average Running Time on Local GPU
« 12.78ms

Average Running Time on CCR GPU
 12.19ms

Running Time of the Program
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Varying Block Size

40.12ms 35.23ms
256 22.45ms 18.17ms
512 12.19ms 10.08ms
768 8.78ms 6.98ms
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Varying Image Size

_ 500%240 1000 *960 2000%1920

12.19ms 12.31ms 20.54ms

CPU 54.71ms 218.13ms 830.12ms
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Conclusions

 For pure rBathﬁmatiC%l computations, GPU offers huge
speed up by otfering huge parallelism

« Synchronization cost is a big overhead
 GPU memory is an important constrains

 Data 1/0 cost from GPU to CPU and GPU to CPU is
F‘u)lgher than Hg er%an |tntra memory /O

« Set reasonable grid and block size
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