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Image Cloning

Definition:

Seamless placing  a source image patch into a 

target image, which smoothly interpolates the 

discrepancies between the boundary of source 

patch and the target across the entire cloned area.
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Segment Source Image Patches into three type:

• Border

• Stricter interior

• Background

Image Preprocessing
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• Membrane interpolation problem under a guidance field is defined as a solution to 

a minimization problem

• Written in discrete from:

• Solution of a minimization problem  satisfies the following equation:

Discrete Possion Solver for Guided Interpolation
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• Solving the following Linear Equations:

• Jacoby Iterative Solution for Linear Equations:

• Applying to our specific Problem:

Discrete Possion Solver for Guided Interpolation
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Hardware Spec in CCR:
• Name: Tesla V100

• CUDA Version: 6.5

• Shared memory per block: 49152

• Total constant memory: 165536

• Regs per block:32768

• Max threads per block: 1024

• Max threads per dim: 1024,1024,64

• Max grid size: 65535, 65535, 65535

• Multi processor count: 14

GPU Resource
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CPU
Load source patch and target image

Preprocess source patch to interior 

and boundary 

Allocate space in GPU and copy 

source patch, target image and 

interior/boundary labels into GPU 

Create two buffers for iteration and 

copy the target image into one buffer 

as initial guess

Launch a kernel for one iteration

Launch a kernel to swap memory 

between two buffers

Launch a kernel for one iteration

Copy back from iteration buffer

GPU

Complete one iteration in GPU

Swap memory in GPU

……

Work Flow
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Synchronization



‘-

10

• #!/bin/bash.

• #SBATCH --partition=gpu

• #SBATCH --time=01:00:00

• #SBATCH --qos=gpu

• #SBATCH --nodes=1

• #SBATCH --ntasks-per-node=1

• #SBATCH --output=slurmNAMD.out

• #SBATCH --job-name=cuda

• module load cuda/6.5

• module load python

• module load opencv

• srun image_cloning source.png destination.png

Sbatch Script
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Average Running Time on CPU:

• 54.71ms

Average Running Time on Local GPU

• 12.78ms

Average Running Time on CCR GPU

• 12.19ms

Parallel Reduction 
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Varying Block Size

Block Size 1 2

128 40.12ms 35.23ms

256 22.45ms 18.17ms

512 12.19ms 10.08ms

768 8.78ms 6.98ms

Grid Size
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Varying Image Size

500*240 1000 *960 2000*1920

GPU 12.19ms 12.31ms 20.54ms

CPU 54.71ms 218.13ms 830.12ms
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• For pure mathematical computations, GPU offers huge 
speed up by offering huge parallelism 

• Synchronization cost is a big overhead

• GPU memory is an important constrains

• Data I/0 cost from GPU to CPU and GPU to CPU is 
higher than higher than intra memory I/O

• Set reasonable grid and block size

Conclusions
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