
PARALLELIZATION OF
FLOYD WARSHALL
ALGORITHM

Guided by: Dr. Russ Miller (UB Distinguished Professor)

CSE 708: Programming Massively Parallel Systems

Presented By: Yashwanth Krishna Porandla

Contents
• Introduction of Algorithm

• Need of Parallelization

• Serial Implementation

• Parallel Implementation

• Results and Visualisations

• References

2

Importance of Floyd Warshall Algorithm
• Handles Negative Weights: Unlike some other shortest-path algorithms

(like Dijkstra's), Floyd-Warshall can handle graphs with negative edge
weights, as long as there are no negative cycles.

• All-Pairs Shortest Path: While many algorithms find the shortest path from
a single source to all other vertices, Floyd-Warshall computes the shortest
paths between every pair of vertices in a graph.

3

Floyd Warshall Algorithm
The Floyd-Warshall algorithm finds shortest paths in a weighted graph, even with
negative edges (but no negative cycles).

• Initialize solution matrix like the input graph matrix.
• For each vertex, update shortest paths using it as an intermediate vertex.
• After all vertices are processed, the matrix contains shortest path distances for every

vertex pair.
• Runs in (O(V^3)) time, where V is the number of vertices.

4

Need For Parallelization

• Cubic Complexity: Given Floyd-Warshall's O(V3) time complexity,
parallelization can optimize execution for large graphs.

• Real-time Needs: Faster computation through parallelization meets
demands of applications like traffic management systems or dynamic
network routing needing immediate shortest-path updates.

5

Serial Implementation
● Code Represents the heart of the

Floyd-Warshall algorithm,
methodically updating the shortest
distances between all pairs of
vertices.

● Systematically checks and updates
the distance matrix, ensuring that
every possible vertex combination is
evaluated for optimal path
determination.

Parallel Implementation
● The adjacency matrix is divided into

rows with each row being assigned to
one of the processes. Each process
is responsible for calculating the
shortest paths within the rows
assigned to it.

● Row-wise parallel implementation
divides the distance matrix into rows,
assigning each row to a separate
thread or processor.

Steps to parallelize?
• For each matrix of n*n and p processes, each process

is given matrix of size [n]*[n/p]

• From the example in the right, you can clearly see to

find the value of arr[i][j], we need arr[i][k] and arr[k][j]

• With the help of row based approach, Process can

locally access arr[i][k], but for arr[k][j] you can see that
that process assigned with kth row, needs to broadcast
all the elements of the kth row to all the processes.

Steps to parallelize?
• Once, we update distance of one processes , but other

processes also need these updated distances to
calculate distances for their submatrix.

• Before updating kth row, we send it to all the other

processes.This enables them to proceed immediately
to do their work.

Performance of Row based parallel algorithm on 1000 * 1000 matrix

Nodes Time(seconds)

1 2.739342

2 2.036491

4 1.801417

8 1.636419

16 1.588156

20 1.654381

32 1.733691

64 2.659988

Performance of Row based parallel algorithm on 1000 * 1000 matrix

Nodes SpeedUp

2 1.345

4 1.521

8 1.674

16 1.725

20 1.656

32 1.580

64 1.117

Performance of Row based parallel algorithm on 2500 * 2500 matrix

Nodes Time(seconds)

1 29.547671

2 18.055083

4 12.945697

8 10.780331

16 9.003291

20 9.450963

32 13.736447

64 20.719030

Performance of Row based parallel algorithm on 2500 * 2500 matrix

Nodes SpeedUp

1 1.0

2 1.64

4 2.28

8 2.74

16 3.28

20 3.13

32 2.15

64 1.43

Performance of Row based parallel algorithm on 5000 * 5000 matrix

Nodes Time(seconds)

1 219.923315

2 137.994994

4 101.533101

8 87.358489

16 74.548490

20 75.028922

32 113.078432

64 180.565270

Performance of Row based parallel algorithm on 5000 * 5000 matrix

Nodes SpeedUp

1 1.0

2 1.59

4 2.17

8 2.52

16 2.95

20 2.93

32 1.94

64 1.22

References
1. MPI Tutorials. Tutorials · MPI Tutorial. (n.d.). Retrieved March 24, 2023, from

https://mpitutorial.com/tutorials/
2. Case Study on Shortest-Path Algorithms. (n.d.). Retrieved March 20, 2023, from

https://www.mcs.anl.gov/~itf/dbpp/text/node35.html

https://mpitutorial.com/tutorials/

