
Implementation of Parallel 
Bitonic Sort using MPI and Intel TBB

Presented for CSE702 Fall 2021

Instructor: Dr. Russ Miller 

Presenter: Zainul Abideen Sayed



Why care about 
parallel sorting 
algorithms ? 



3

Why parallel sorting?
• Sorting is one of the most common operations in computation.

• The advancement in parallel hardware.

• Increasing nodes in a cluster and cores in a processor.

• Efficient utilization of resources.

• Therefore, good parallel sorting algorithms are needed.



4

Popular parallel sorting algorithms
• Bitonic sort

• Sample sort

• Merge sort

• Quick sort

• Radix sort

Bitonic sorting algorithm is based on 
bitonic sorting network. The key operation 
is based on the sorting network which 
converts a given sequence into a bitonic
sequence and finally bitonic merge can 
produce a monotonically increasing or 
decreasing sequency.



5

Bitonic Sort Principle 

*Introduction to Parallel Computing 2nd Edition, Ananth Grama

• Bitonic sequence <1, 2, 4, 7, 6, 0>  <8, 9, 2, 1, 0, 4> <0, 4, 8, 9, 2, 1> <3, 4, 7, 8, 6, 5, 2, 1>

• Let s = <a0, a1, ..., an-1> 

• s1 = { min( ao, an/2 ), min( a1, an/2+1 ),.…..,min( an/2-1, an-1 ) }  

• s2 = { max( ao, an/2 ), max( a1, an/2+1 ),.…..,max( an/2-1, an-1 ) }

• In sequence s1 , there is an element bi = min{ ai , an/2+i } such that all the elements before bi

are from the increasing part of the original sequence and all the elements after bi are from 
the decreasing part.

• Opposite case for bi ` = max{ ai , an/2+i } 



6

Example

3 4 7 8 | 6 5 2 1 

3 4 2 1 | 6 5 7 8

2 1 | 3 4 | 6 5 | 7 8

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
All elements in second
sequence is greater than
the first

𝐿𝑜𝑔2𝑁



7

Example: Sorting Network (Sort + Merge)



8

Example: 16 lines

*Introduction to Parallel Computing 2nd Edition, Ananth Grama



9

Example: 16 lines 

Hypercube

*Introduction to Parallel Computing 2nd Edition, Ananth 
Grama



10

Algorithm
COMPARE SECTION Complexity

• (1 + log n) (log n) / 2

• Tp =  𝜃(n log 2n))
procedure BITONIC_SORT(label, d)
begin

for i := 0 to d - 1 do
for j := i downto 0 do

if (i + 1) st bit of label != j th bit of label then
comp_exchange_max(j);

else
comp_exchange_min(j);

end BITONIC_SORT

i j 0 1 0 0
1 0 comp_exchange_min(0);

2 1 comp_exchange_max(1);

2 0 comp_exchange_max(0);

3 2 comp_exchange_max(2);

3 1 comp_exchange_min(1);

3 0 comp_exchange_min(0);

*Introduction to Parallel Computing 2nd Edition, Ananth Grama



11

More on complexity…
• N/P Block of data per processor

• Fast sequential sort 

- Merge sort 𝜃((𝑛/𝑝) log(𝑛/𝑝))

• Bitonic Merge 

- 𝜃(log 2 𝑝)



12

Results for 1 Billion keys
Key Observation: Inter-node 
parallelism give better performance 
than Intra-node parallelism.

Relative speed-up:
T1 =  6.53;    T16 = 0.8

Sp = 8 
Ep = 0.5 

• Was able to sort 100 Billion keys on 
512 ranks in 44.7524 sec

• Input Data size : 383G



13

Speed-up and Efficiency

1

1.62

2.7

4.79

8

1 0.81 0.67 0.59 0.5

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16
Speed-up Efficiency



14

Results for 1 Billion keys

Observation:

• The code stops 
scaling after 128 
Nodes. 

• The execution time 
increases in some 
cases.

• However, It will be 
interesting to see the 
performance at 256 
nodes.



15

1.00 1.48

2.88

4.37

6.65

10.39

16.21 16.67 17.07

14.72

17.94

16.38100.00

74.06
71.93

54.60

41.55

32.48
25.33

25.64

25.86

21.97

26.01

23.41

0

20

40

60

80

100

120

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 64 128 130 132 134 138 140

Ef
fic
ie
nc
y

Sp
ee
d-
up

Speed-up Efficiency



16

Amdahl's Law
The Law focuses on strong scaling where input remains constant, and we increase the processors 
expecting the runtime to reduce in proportion to number of processors added maintaining reasonable 
efficiency. 

𝑆𝑝 = /

01 ! "#
$

where 𝛽 is the serial part of the code which cannot be parallelized.

• In the above experiment:   (𝑆𝑝 =  16, p = 140 ) Therefore, 𝛽 comes to = 5.5% .

• So according the Amdahl's Law 5.5% of code will never be parallelized. 

• For Input size of 1 Billion keys we are able to strongly scale upto 32 nodes. After that the efficiency 
decrease dramatically.



17

Gustafson's law



18

Gustafson's law
As we increase the processor, we are able to solve bigger and bigger problems thus, achieving weak scaling

𝑆𝑝 = 𝑝 − 𝛼 𝑝 − 1

𝛼 =
𝑇𝑠𝑒𝑞

𝑇𝑠𝑒𝑞 + 𝑇𝑝𝑎𝑟

Substituting the values from above experiment : (𝑇𝑠𝑒𝑞 = 1.4, 𝑇𝑝𝑎𝑟 = 9.6,  𝛼 = 0.127 )

𝑺𝒑 = 14.05

Therefore, the algorithm is weakly scalable at 16 nodes as N:P are in ratio.



19

Running without TBB (Inter MPI Tracer)



20

Running with TBB (Inter MPI Tracer)



21

Slurm.sh Readme

Repo: https://gitlab.com/zain_s/bitonic-sort



22

References
• Introduction to Parallel Computing Solutions Manual on the Web

Grama, Gupta, Karypis & Kumar

• R. Miller and L. Boxer, Algorithms Sequential and Parallel: A Unified 
Approach, Third Edition, Cengage Learning, Boston, Mass., 2013.

https://www.pearson.com/uk/educators/higher-education-educators/product/Grama-Introduction-to-Parallel-Computing-Solutions-Manual-on-the-Web-2nd-Edition/9781292105765.html
http://www.cengage.com/search/productOverview.do%3FNtt=Miller+and+Boxer%7C%7C1012829984118247995652669251947404619&N=16&Ntk=APG%7C%7CP_EPI


23

Thank you!


