Mersenne Twister
Implementation on a GPU

By Rohit Bal & Sagar Keer

CSE 704 Spring 2011
Instructor: Dr. Russ Millerx

Introduction

What is the Mersenne Twister?

A pseudo-random number generator
Developed by Matsumoto & Nishimura in
1997

For a k-bit word length, produces uniform
distribution in the range [0,2%-1]

Introduction

Properties:
Long Period
Efficient use of memory
Good distribution properties
High Performance

Introduction

Mersenne Twister focuses on having an
almost perfectly uniform distribution
Designed for statistical simulations like
the Monte-Carlo simulations where
uniformity plays a key role

In its canonical form, it is not suitable for
cryptographic applications as future
values can be predicted from a limited
set of outputs

Rationale

Parameters:
w - word size
n, m - degree of recursion, middle term
Also n>m>1
r - separation point in x,UPPer | x, fower
a - bit vector, lower row of Matrix A
l,u, s, t - tempering shift parameters
b, ¢ - tempering masks, bit vectors

Rationale

Bit vectors are given by the recurrence
relation:

X=X, T (PR |\ x, DA

where:

xupper | x fower g the concatenation of
r most significant bits in x, and w-r least
significant bits in x, , ,

Rationale

Matrix A 1s a w*w matrix of the form

aw—l aw-Z a'1 a'0

Rationale

For better distribution, transformation is
applied using the tempering vector T to
each bit vector, with the operations:
Z=X

zN=(z>>u)

zN=(z<<s)&Db

zN=(z<<t)&c

7= (z=>2])

where b, ¢,], u, s, t are the tempering
components as defined earlier

Rationale

For a position k >= n, %, 1s the function of
three preceding sequence elements 1e:

X =ix X ,.%)

To sum up, we get an almost perfectly
uniform distribution using n initial seeds

Implementation

C with CUDA
Used MTGP libraries

MAGIC system
Worked with 32-bit word size

Produced integral values

Implementation

Algorithm maps well to CUDA because:
Uses bitwise arithmetic

Arbitrary amount of memory writes

Implementation

Parameter ‘sets’ determine period

Total number of parameter sets is 128

In other words, 128 pseudorandom
sequences can be generated for each
period.

Maximum period is 244497 — 1 !

However, we used only one period :
023209 _]

Implementation

Each thread uses its thread 1d as a
parameter (like a seed)

This parameter 1s used to calculate
parameters defined by the MT algorithm

This guarantees randomization at thread
level

Results

— Sequential

— Parallel

)
o
=
o
[
@
1]
=
w
E
l_
Ta]
=
c
c
S
=

e ———

50 100 500 1000 5000

Data Size (x 109)

Reterences

MTGP -http://www.math.sci.hiroshima-
u.ac.jp/~m-mat/MT/MTGP/index.html

Makoto Matsumoto, Keio University/Max-
Planck_Institut fur Mathematik;
TakujiNishimura, Keio University.

NVIDIA Sample Code for MT

Thank you!

