
Matt Heavner
mheavner@buffalo.edu

CSE710
Fall 2009



 Problem Statement: Given a set of cities and 
corresponding locations, what is the shortest 
closed circuit that visits all cities without 
loops?

?



 Fitness Function: Function or routine to 
optimize

 Population: Current set of candidate solutions

 Chromosome: A specific candidate solution to 
optimization problem, usually encoded into a 
string of values

 Fitness: Fitness function output for a given 
chromosome



generate initial population

evaluate fitness of population

while termination criteria not met:

breed new population:

apply elitism

select two chromosomes from old pop:

perform crossover?

perform mutation?

evaluate fitness of new population



 Select a certain percentage, called the elitism 
percentage.

 When breeding new population, sort by 
fitness. Bring this percent of top performing 
solutions to new population.

 Ensures top performers won’t get lost.



 When creating new population, need a way of 
selecting chromosomes from the old 
population for breeding. Various methods 
include:
◦ Fitness-Proportionate

◦ Tournament

◦ Etc.



 Select crossover probability

 When two chromosomes are selected for 
breeding. If a random number meets this 
probability, crossover is performed

 Select a random crossover point

 Swap chromosome sections about this point

crossover



 Select a mutation probability 

 For each new population member, select 
random number. If within probability mutate

 Point mutation:

 Swap mutation:



 Chromosome: Candidate permutation of 
ordered city visits, no repeats. Stored as a 
sequence is city indices corresponding to a 
lookup table

 Fitness: 1/(total Euclidean distance of circuit)

 Optimization: maximum fitness == 
chromosome with smallest closed non-
looping circuit

1 6 3 8 4 7 9 2 5 0



 Roulette Wheel Selection was used for this 
problem. 

 Roulette Wheel Selection
 Probability of a chromosome being selected is 

dependent on its fitness

 Rank by fitness and normalize. Choose random 
number in this range and iterate through ranked 
chromosomes, summing fitness values, until this 
random number is reached. Pick corresponding 
member.



 Used modified one-point crossover
◦ Randomly select swap point as before and swap.

◦ Iterate through elements in old chromosome and fill 
in the missing elements in order

◦ Necessary to preserve uniqueness of city visits

1 7 2 4 5 9 8 3 6 0

2 0 9 8 1 7 6 3 5 4 1 7 2 4 5 0 9 8 6 3

2 0 9 8 1 7 4 5 3 6crossover



 Rather than point mutation, swap mutation 
was used to ensure uniqueness of locations

 Swap mutation:



 Split global population into subpopulations –
one for each node.

 On each node, split subpopulation into 4. For 
each of these groups use CUDA to calculate 
fitness and create new population using 
sequential method. Do this until a fixed 
number of sub-iterations has completed.

 Once sub-iterations have completed, 
recombine at a global level, redistribute and 
repeat until global iterations are finished.



glob_iters = 0

while glob_iters != MAX_GLOB_ITERS:

distribute global population via MPI

sub_iters = 0

while sub_iters != MAX_SUB_ITERS:

split sub-population into 4

calculate fitness of each sub-population via CUDA

breed new sub-population

sub_iters++

gather sub-populations via MPI

breed new global population

glob_iters++



GLOBAL 
POPULATION

SUB POP SUB POP SUB POP SUB POP
SUB POP

MPI

SUB POP/4
SUB POP/4 SUB POP/4 SUB POP/4

OpenMP

CUDA Evaluate 
Fitness

Evaluate 
Fitness

Evaluate 
Fitness

Evaluate 
Fitness

SUBPOPULATION BREEDING

GLOBAL POPULATION BREEDING



0

2000

4000

6000

8000

10000

12000

14000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d

s
)

Population Size

Runtime vs. Population Size

(Sequential)

Platform: Intel(R) Xeon(R) CPU E5430 @ 
2.66GHz (same as worker nodes 9-13)



0

500

1000

1500

2000

2500

3000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(2 Nodes, 4 Teslas/Node) 



0

100

200

300

400

500

600

700

800

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(4 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

300

350

400

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(6 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

300

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(8 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(10 Nodes, 4 Teslas/Node) 



0

500

1000

1500

2000

2500

3000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(Various Number of Nodes, 4 Teslas/Node)

2 Nodes

4 Nodes

6 Nodes

8 Nodes

10 Nodes



0

2000

4000

6000

8000

10000

12000

14000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(Including Sequential)

Sequential

2 Nodes

4 Nodes

6 Nodes

8 Nodes

10 Nodes

Sequential Platform: Intel(R) Xeon(R) CPU E5430 
@ 2.66GHz (same as worker nodes 9-13)



0

100

200

300

400

500

600

700

800

2 4 6 8 10

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Number of Nodes

Runtime vs. Number of Nodes (4 Teslas/Node)

(Various Population Sizes)

480

960

1920

3840

7680

15360

23040



 Sequential would eventually converge to a 
result and stick there.

 Simple parallelization of fitness evaluation 
just speeded this up but didn’t result in 
better answers

 Advantages of parallelism (aside from speed 
of performance) came from use of 
subpopulations
◦ Each node allowed to converge to a (possibly) sub-

optimal answer, recombination at a global scale 
learned from all of these



 50 Cities

 Crossover Probability: 65%

 Mutation Probability: 15%
◦ Fairly high to help with early convergence

 Elitism: 3%



0

20

40

60

80

100

120

0 20 40 60 80 100 120



0

20

40

60

80

100

120

0 20 40 60 80 100 120

Series1



 What’s next?
◦ Modification of crossover / mutation operators

◦ Tweaking parameters specific to this problem:

 Population size

 Proper balance between global and sub iterations

◦ Generalize algorithmic framework for use in other 
optimization problems


