
Matt Heavner
mheavner@buffalo.edu

CSE710
Fall 2009



 Problem Statement: Given a set of cities and 
corresponding locations, what is the shortest 
closed circuit that visits all cities without 
loops?

?



 Fitness Function: Function or routine to 
optimize

 Population: Current set of candidate solutions

 Chromosome: A specific candidate solution to 
optimization problem, usually encoded into a 
string of values

 Fitness: Fitness function output for a given 
chromosome



generate initial population

evaluate fitness of population

while termination criteria not met:

breed new population:

apply elitism

select two chromosomes from old pop:

perform crossover?

perform mutation?

evaluate fitness of new population



 Select a certain percentage, called the elitism 
percentage.

 When breeding new population, sort by 
fitness. Bring this percent of top performing 
solutions to new population.

 Ensures top performers won’t get lost.



 When creating new population, need a way of 
selecting chromosomes from the old 
population for breeding. Various methods 
include:
◦ Fitness-Proportionate

◦ Tournament

◦ Etc.



 Select crossover probability

 When two chromosomes are selected for 
breeding. If a random number meets this 
probability, crossover is performed

 Select a random crossover point

 Swap chromosome sections about this point

crossover



 Select a mutation probability 

 For each new population member, select 
random number. If within probability mutate

 Point mutation:

 Swap mutation:



 Chromosome: Candidate permutation of 
ordered city visits, no repeats. Stored as a 
sequence is city indices corresponding to a 
lookup table

 Fitness: 1/(total Euclidean distance of circuit)

 Optimization: maximum fitness == 
chromosome with smallest closed non-
looping circuit

1 6 3 8 4 7 9 2 5 0



 Roulette Wheel Selection was used for this 
problem. 

 Roulette Wheel Selection
 Probability of a chromosome being selected is 

dependent on its fitness

 Rank by fitness and normalize. Choose random 
number in this range and iterate through ranked 
chromosomes, summing fitness values, until this 
random number is reached. Pick corresponding 
member.



 Used modified one-point crossover
◦ Randomly select swap point as before and swap.

◦ Iterate through elements in old chromosome and fill 
in the missing elements in order

◦ Necessary to preserve uniqueness of city visits

1 7 2 4 5 9 8 3 6 0

2 0 9 8 1 7 6 3 5 4 1 7 2 4 5 0 9 8 6 3

2 0 9 8 1 7 4 5 3 6crossover



 Rather than point mutation, swap mutation 
was used to ensure uniqueness of locations

 Swap mutation:



 Split global population into subpopulations –
one for each node.

 On each node, split subpopulation into 4. For 
each of these groups use CUDA to calculate 
fitness and create new population using 
sequential method. Do this until a fixed 
number of sub-iterations has completed.

 Once sub-iterations have completed, 
recombine at a global level, redistribute and 
repeat until global iterations are finished.



glob_iters = 0

while glob_iters != MAX_GLOB_ITERS:

distribute global population via MPI

sub_iters = 0

while sub_iters != MAX_SUB_ITERS:

split sub-population into 4

calculate fitness of each sub-population via CUDA

breed new sub-population

sub_iters++

gather sub-populations via MPI

breed new global population

glob_iters++



GLOBAL 
POPULATION

SUB POP SUB POP SUB POP SUB POP
SUB POP

MPI

SUB POP/4
SUB POP/4 SUB POP/4 SUB POP/4

OpenMP

CUDA Evaluate 
Fitness

Evaluate 
Fitness

Evaluate 
Fitness

Evaluate 
Fitness

SUBPOPULATION BREEDING

GLOBAL POPULATION BREEDING



0

2000

4000

6000

8000

10000

12000

14000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d

s
)

Population Size

Runtime vs. Population Size

(Sequential)

Platform: Intel(R) Xeon(R) CPU E5430 @ 
2.66GHz (same as worker nodes 9-13)



0

500

1000

1500

2000

2500

3000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(2 Nodes, 4 Teslas/Node) 



0

100

200

300

400

500

600

700

800

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(4 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

300

350

400

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(6 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

300

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(8 Nodes, 4 Teslas/Node) 



0

50

100

150

200

250

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(10 Nodes, 4 Teslas/Node) 



0

500

1000

1500

2000

2500

3000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(Various Number of Nodes, 4 Teslas/Node)

2 Nodes

4 Nodes

6 Nodes

8 Nodes

10 Nodes



0

2000

4000

6000

8000

10000

12000

14000

480 960 1920 3840 7680 15360 23040 46080

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Population Size

Runtime vs. Population Size

(Including Sequential)

Sequential

2 Nodes

4 Nodes

6 Nodes

8 Nodes

10 Nodes

Sequential Platform: Intel(R) Xeon(R) CPU E5430 
@ 2.66GHz (same as worker nodes 9-13)



0

100

200

300

400

500

600

700

800

2 4 6 8 10

R
u

n
ti

m
e
 (
s
e
c
o
n
d
s
)

Number of Nodes

Runtime vs. Number of Nodes (4 Teslas/Node)

(Various Population Sizes)

480

960

1920

3840

7680

15360

23040



 Sequential would eventually converge to a 
result and stick there.

 Simple parallelization of fitness evaluation 
just speeded this up but didn’t result in 
better answers

 Advantages of parallelism (aside from speed 
of performance) came from use of 
subpopulations
◦ Each node allowed to converge to a (possibly) sub-

optimal answer, recombination at a global scale 
learned from all of these



 50 Cities

 Crossover Probability: 65%

 Mutation Probability: 15%
◦ Fairly high to help with early convergence

 Elitism: 3%



0

20

40

60

80

100

120

0 20 40 60 80 100 120



0

20

40

60

80

100

120

0 20 40 60 80 100 120

Series1



 What’s next?
◦ Modification of crossover / mutation operators

◦ Tweaking parameters specific to this problem:

 Population size

 Proper balance between global and sub iterations

◦ Generalize algorithmic framework for use in other 
optimization problems


