Massively Parallel Traveling
Salesman Genetic Algorithm

Matt Heavner
mheavner@buffalo.edu
CSE710

Fall 2009

Traveling Salesman Problem

» Problem Statement: Given a set of cities and
corresponding locations, what is the shortest
closed circuit that visits all cities without
loops?

Genetic Algorithms: Terminology

» Fithess Function: Function or routine to
optimize
» Population: Current set of candidate solutions

» Chromosome: A specific candidate solution to
optimization problem, usually encoded into a
string of values

» Fitness: Fitness function output for a given

chromosome

Genetic Algorithms: Pseudocode

generate initial population
evaluate fitness of population
while termination criteria not met:
breed new population:
apply elitism
select two chromosomes from old pop:
perform crossover?
perform mutation?
evaluate fitness of new population

Genetic Algorithms: Breeding -
Elitism
» Select a certain percentage, called the elitism

percentage.

» When breeding new population, sort by
fitness. Bring this percent of top performing
solutions to new population.

» Ensures top performers won’t get lost.

Genetic Algorithms: Breeding -
Selection

» When creating new population, need a way of
selecting chromosomes from the old
population for breeding. Various methods
include:

> Fitness—Proportionate
> Tournament
> Etc.

Genetic Algorithms: Breeding -
Crossover

» Select crossover probability

» When two chromosomes are selected for
breeding. If a random number meets this
probability, crossover is performed

» Select a random crossover point
» Swap chromosome sections about this point

crossover

e p—

Genetic Algorithms: Breeding -
Mutation

» Select a mutation probability

» For each new population member, select
random number. If within probability mutate

» Point mutation:

! !
EEEEEREEEE d |]
» Swap mutation:
! ! ! !
EEEER EEEE d]

.

Genetic Algorithm for TSP

» Chromosome: Candidate permutation of
ordered city visits, no repeats. Stored as a
sequence is city indices corresponding to a
lookup table

116/318/4/7/912/5/0

» Fitness: 1/(total Euclidean distance of circuit)

» Optimization: maximum fitness ==
chromosome with smallest closed non-
looping circuit

Genetic Algorithm for TSP:
Selection

» Roulette Wheel Selection was used for this
problem.

» Roulette Wheel Selection

- Probability of a chromosome being selected is
dependent on its fitness

- Rank by fitness and normalize. Choose random
number in this range and iterate through ranked
chromosomes, summing fitness values, until this

random number is reached. Pick corresponding

member.

Genetic Algorithm for TSP:
Crossover

» Used modified one-point crossover

- Randomly select swap point as before and swap.

> |terate through elements in old chromosome and fill
in the missing elements in order

- Necessary to preserve uniqueness of city visits

l

(1/7(2(4/5/9/8]3]6]/0NGESEEAEUMN 2/ 0/9/8/1(7(4/5/3/6
! ><

2/019/8/1/7/6[3/5/4 (1]7[2]4]5]0]9]8[6]3

Genetic Algorithm for TSP:
Mutation

» Rather than point mutation, swap mutation
was used to ensure uniqueness of locations

» Swap mutation:

| | | |
EEEEETEEEE d |

.

Parallelization of Algorithm

» Split global population into subpopulations -
one for each node.

» On each node, split subpopulation into 4. For
each of these groups use CUDA to calculate
fitness and create new population using
sequential method. Do this until a fixed
number of sub-iterations has completed.

» Once sub-iterations have completed,
recombine at a global level, redistribute and
repeat until global iterations are finished.

Parallelization of Algorithm:
Pseudocode

glob_iters = 0
while glob_iters '= MAX_GLOB_ITERS:
distribute global population via MPI
sub_iters = 0
while sub_iters '= MAX_SUB_ITERS:
split sub-population into 4
calculate fitness of each sub-population via CUDA
breed new sub-population
sub_iters++
gather sub-populations via MPI
breed new global population
glob_iters++

Parallelization of Algorithm:
Population Distribution

GLOBAL

POPULATION

MPI
GLOI?POPULAIION BREED\\‘

SUB POP SUB POP SUB POP SUB POP

OpenMP MU%TION RE\ED»*\

" SUB POP/4 ~ SUBPOP/4 N SUBPOP/4 SUB POP/4

Evaluate Evaluate Evaluate Evaluate
Fitness Fitness Fithess Fithess

Sequential Timing Results

Runtime vs. Population Size
(Sequential)

14000

12000 /

10000 //
8000

6000

4000 /
!

Runtime (seconds)

2000 =~

//

480 960 1920 3840 7680 15360 23040 46080

Population Size

Platform: Intel(R) Xeon(R) CPU E5430 @
2.66GHz (same as worker nodes 9-13)

2-Node Timing Results

Runtime vs. Population Size
(2 Nodes, 4 Teslas/Node)

3000

2500 /

2000 /

m
o
c
: /
()]
£ 1500 /
v
2 /
S 1000
x
500 /
/
0 S——
480 960 1920 3840 7680 15360 23040 46080

Population Size

4-Node Timing Results

Runtime (seconds)

800

700

600

500

400

300

200

100

Runtime vs. Population Size
(4 Nodes, 4 Teslas/Node)

//
—
/
480 960 1920 3840 7680 15360 23040 46080

Population Size

6-Node Timing Results

Runtime vs. Population Size
(6 Nodes, 4 Teslas/Node)

400

350 /

300 /

)
2 250 /
o /
(@)
(V]
£ 200
(V]
: /
€ 150
=
o /
100 S

. -

‘/'

480 960 1920 3840 7680 15360 23040 46080

Population Size

8-Node Timing Results

Runtime vs. Population Size
(8 Nodes, 4 Teslas/Node)

300

250 /

200 /

0
£ /
(@)
(V]
£ 150
(V]
2 /
S 100
[~ /

. __—

_/
0
480 960 1920 3840 7680 15360 23040 46080

Population Size

10-Node Timing Results

Runtime (seconds)

250

200

150

100

50

Runtime vs. Population Size
(10 Nodes, 4 Teslas/Node)

/

_/

/
_/
480 960 1920 3840 7680 15360 23040 46080

Population Size

Timing Results - Multiple Nodes

Runtime (seconds)

3000

2500

2000

1500

1000

500

Runtime vs. Population Size
(Various Number of Nodes, 4 Teslas/Node)

480

960

1920

3840 7680 15360 23040

Population Size

46080

— 2 Nodes
—4 Nodes
— 6 Nodes
— 8 Nodes
— 10 Nodes

Timing Results - Multiple Nodes
(with sequential)

Runtime vs. Population Size

(Including Sequential)
14000

12000 /

10000 /
/ —Sequential
8000
/ =2 Nodes
6000 4 Nodes
/ -6 Nodes
4000
/ =8 Nodes
2000 ~ ——10 Nodes

480 960 1920 3840 7680 15360 23040 46080

Runtime (seconds)

Population Size

Sequential Platform: Intel(R) Xeon(R) CPU E5430
@ 2.66GHz (same as worker nodes 9-13)

Timing Results - Fixed Population,
Varying Nodes

Runtime vs. Number of Nodes (4 Teslas/Node)
(Various Population Sizes)

800
700
600
@ ——480
2 500
S —960
a
< 400 —1920
£
£ 300 N\ 3840
=
® 200 \ —7680
\ —15360
100 ~; —_— 23040
0 T T T T 1

Number of Nodes

TSP Results: Background

» Sequential would eventually converge to a

result and stic

» Simple paralle
just speeded t

K there.
ization of fitness evaluation

nis up but didn’t result in

better answers

» Advantages of parallelism (aside from speed
of performance) came from use of
subpopulations

- Each node allowed to converge to a (possibly) sub-
optimal answer, recombination at a global scale
learned from all of these

TSP Results: Parameters Used

» 50 Cities
» Crossover Probability: 65%

» Mutation Probability: 15%
> Fairly high to help with early convergence

» Elitism: 3%

TSP Results: Test Example

120

100
o A4 . * ¢
TS
%0 * 14 * . *
L 4 ® 4 . e ¢
TS
¢ .
.
60 ® i ? =
. .
.
® ¢ o Y
40 s .
o o ¢ ¢ *
TS
20 * *
. **
* o
.
O T T T T ’ T 1

60 80 100

120

TSP Results: Test Example

Conclusion

» What’s next?

- Modification of crossover / mutation operators
- Tweaking parameters specific to this problem:
- Population size
- Proper balance between global and sub iterations

- Generalize algorithmic framework for use in other
optimization problems

