
Author: Morgan Cooper

Date: Fall 2009

Class: CSE710

 Goal

 Problem Set

 Expected Values

 Input; Output;

 Plan of Attack

 Solution (Executed on Device)

 Distributed Solution (Multiple Devices)

 Results

 Conclusion

 To find the optimal amount of computation a
thread should compute when using CUDA
devices

 Idea (Steps)
 1: Implement an easy solution that requires minimal

computation
 The problem must be scalable relatively easy with

respect to threads

 2: Run tests for a set number of threads with varying
input size

 3: Change thread count and repeat step 2 until
complete range of thread domain is exhausted

 5: Analyze results for conclusion

 Factoring a number
 Simple task but can get very time consuming once the

number becomes very large
 If the number only contains two factors then you can

assume it is the product of two prime numbers

 For cryptography it’s essential to use a one-way, or
trapdoor mathematical function.
 A mathematical function that’s easy to do in one direction

but very difficult, or impossible to reverse.

 Factoring of prime numbers
 Easy to find product of two large prime numbers.
 Difficult to factor large product to two prime numbers.
 Very large prime number used, because larger the prime

number, the more difficult factoring becomes.

 Input

 Very large integer

 Output

 Array of values which are factors of the input

 Brute force solution
 Iterate over all values in range
 Do Modulus operation to test for factor
 Remember proper factors
 Return results

 Data Structure Storage (Results)
 Array of integers that hold the results
 Size of array is sqrt(“input number”) *2
 Array multiplied by two to hold pair of the factor

 Each successful modulus operation sets appropriate
location in array to integer value found
 Also sets adjacent value of array which is offest by

sizeCount(number of iterations required per device)

 In this example assuming a device had to compute
Factors for the number 20

 sizeCount would be sqrt(20) +1 which is 5

 factor found at Index = 1 would mean it needs to
set its adjacent factor at (Index + sizeCount) which
would be position 6 in the array.

 Ex. Array[1] * Array[6] = 20 or 10*2 = 20

 Input number N

 Each Iteration

 Perform Modulus operation for each index on N looking for
resulting 0 value and set according Factor position

 Device’s starting number is set according to starting location
passed in plus it’s own threadId.x

 Ex. tempNumber%N = start + threadId.x

 If ((tempNumber%N) == 0) Array[Index] = tempNumber%N
Array[Index+sizeCount] = N/tempNumber

Index 0 1 2 … … …
Index+

SizeCount
Index+

SizeCount

Operation %N %N %N … … … /N /N

Array 0 0 0 … … … 0 0

__global__ static void kernel(int num,int start,int sizeCount,int numThreads,int
*value)

{
int tx = threadIdx.x;
int insertPosition = tx;

int tempNum = tx + start;

while(insertPosition < sizeCount){
if((num%tempNum) == 0){

value[insertPosition] = tempNum;
value[insertPosition+sizeCount] = num/tempNum;

}
insertPosition = insertPosition + numThreads;
tempNum = tempNum + numThreads;

}

}

 Host cudaMalloc’s on all CUDA devices

 Split Array by Device then between each
process

 Amount of Iterations = (sqrt(NUM) +1)/devCount

Host

Device 1

Threads
running in

Parallel

Gather

Device 2

Threads
running in

Parallel

Gather

Device 3

Threads
running in

Parallel

Gather

Device 4

Threads
running in

Parallel

Gather

 Thread creation is very minimal

 Most time spent in device initialization

 Threads computing up to 1000 computations
seems optimal with including device
initialization for timing

 Further research

 Time kernel execution to obtain direct relation to
spawning threads with excluding device time

