J ORIZATION OF A
YARGE NUMBER

or: Morgan Cooper
Date: Fall 2009
Class: CSE710



utline

Executed on Device)
ted Solution (Multiple Devices)

= Conclusion



Goal

timal amount of computation a
mpute when using CUDA

n tests for a set number of threads with varying

input size

= 3: Change thread count and repeat step 2 until
complete range of thread domain is exhausted

= 5: Analyze results for conclusion



Problem Set

an get very time consuming once the

ry large

ains two factors then you can
sume it is the prod f two prime numbers
ryptography it’'s essential to use a one-way, or
oor mathematical function.

mathematical function that’s easy to do in one direction
t very difficult, or impossible to reverse.

ring of prime numbers

= Fasy to find product of two large prime numbers.

= Difficult to factor large product to two prime numbers.

= Very large prime number used, because larger the prime
number, the more difficult factoring becomes.



cted Values

-of values whic| actors of the input



lan of Attack

esults)

of integers that hold the results

of array is sqrt(“input number”) *2

ay multiplied by two to hold pair of the factor

uccessful modulus operation sets appropriate
in array to integer value found

o Also sets adjacent value of array which is offest by
sizeCount(number of iterations required per device)



rray Data Structure

le assuming a device had to compute
umber 20

d be sqrt(20) +1 which is 5

factor found a x =1 would mean it needs to
et its adjacent factor at (Index + sizeCount) which
ould be position 6 in the array.

Ex. Array[1] * Array[6] = 20 or 10*2 = 20

10]/1]2]314]516]7|8\%)
vawe 1/2/0/4'520100)5\4




jon (Executed on Device)

erform Modulus operation for each index on N looking for
ulting 0 value and set according Factor position

ice’s starting number is set according to starting location
ssed in plus it’s own threadld.x

X. tempNumber %N = start + threadId.x

mpNumber%N) == 0) Array[Index] = tempNumber %N
Array[Index+tsizeCount] = N/tempNumber

\ \ Index+ Index+

n If



ecuted on Device)

cernel(int num,int start,int sizeCount,int numThreads,int

ertPosition < sizeCount ){
otempNum) == 0){

¢ [1nsertP051t10n] = tempNum;
insertPosition+sizeCount| = num/tempNum;

ition = insertPosition + numThreads;
tempNum + numThreads;



yibuted Solution (Multip

e Devices)

udaMalloc’s on all CUDA ¢

! b
3 .
|\

»

b
Threads Threads Threads
running in running in running in
Parallel L Parallel \ Parallel

[ Gather
|

evices

r by Device then between each

= Amount of Iterations = (sqrt(NUM) +1)/devCount

Device 1
\

Threads

running in
~ Parallel



+
X

&

[ary

(2]
e
=]
=]
3
g 0.95
)
.g
=

ol
o

— 4= xT

=)
&

@ XK=

-_$_ q‘_.";b >K.>i<‘-|->’%

100 1000 10000
Number of Integer Calculations per Thread




Results

Time vs. Number of threads

=0=—1x10"14
—2—1x10"13

(]
o
=
=]
9
9
v
=
or=
Y
L
[




Results

Varying Integer Input Size

/]
e
=]
o
o
v
2]
(=]
ov|
]
o§
=~

1E+09 1E+10 1E+11 1E+12 1E+13 1E+14
Input Integer




onclusion

n is very minimal
device initialization

to 1000 computations
1ding device

optimal with i
ization for timing

research

s Time kernel execution to obtain direct relation to
spawning threads with excluding device time



