
Author: Morgan Cooper

Date: Fall 2009

Class: CSE710

 Goal

 Problem Set

 Expected Values

 Input; Output;

 Plan of Attack

 Solution (Executed on Device)

 Distributed Solution (Multiple Devices)

 Results

 Conclusion

 To find the optimal amount of computation a
thread should compute when using CUDA
devices

 Idea (Steps)
 1: Implement an easy solution that requires minimal

computation
 The problem must be scalable relatively easy with

respect to threads

 2: Run tests for a set number of threads with varying
input size

 3: Change thread count and repeat step 2 until
complete range of thread domain is exhausted

 5: Analyze results for conclusion

 Factoring a number
 Simple task but can get very time consuming once the

number becomes very large
 If the number only contains two factors then you can

assume it is the product of two prime numbers

 For cryptography it’s essential to use a one-way, or
trapdoor mathematical function.
 A mathematical function that’s easy to do in one direction

but very difficult, or impossible to reverse.

 Factoring of prime numbers
 Easy to find product of two large prime numbers.
 Difficult to factor large product to two prime numbers.
 Very large prime number used, because larger the prime

number, the more difficult factoring becomes.

 Input

 Very large integer

 Output

 Array of values which are factors of the input

 Brute force solution
 Iterate over all values in range
 Do Modulus operation to test for factor
 Remember proper factors
 Return results

 Data Structure Storage (Results)
 Array of integers that hold the results
 Size of array is sqrt(“input number”) *2
 Array multiplied by two to hold pair of the factor

 Each successful modulus operation sets appropriate
location in array to integer value found
 Also sets adjacent value of array which is offest by

sizeCount(number of iterations required per device)

 In this example assuming a device had to compute
Factors for the number 20

 sizeCount would be sqrt(20) +1 which is 5

 factor found at Index = 1 would mean it needs to
set its adjacent factor at (Index + sizeCount) which
would be position 6 in the array.

 Ex. Array[1] * Array[6] = 20 or 10*2 = 20

 Input number N

 Each Iteration

 Perform Modulus operation for each index on N looking for
resulting 0 value and set according Factor position

 Device’s starting number is set according to starting location
passed in plus it’s own threadId.x

 Ex. tempNumber%N = start + threadId.x

 If ((tempNumber%N) == 0) Array[Index] = tempNumber%N
Array[Index+sizeCount] = N/tempNumber

Index 0 1 2 … … …
Index+

SizeCount
Index+

SizeCount

Operation %N %N %N … … … /N /N

Array 0 0 0 … … … 0 0

__global__ static void kernel(int num,int start,int sizeCount,int numThreads,int
*value)

{
int tx = threadIdx.x;
int insertPosition = tx;

int tempNum = tx + start;

while(insertPosition < sizeCount){
if((num%tempNum) == 0){

value[insertPosition] = tempNum;
value[insertPosition+sizeCount] = num/tempNum;

}
insertPosition = insertPosition + numThreads;
tempNum = tempNum + numThreads;

}

}

 Host cudaMalloc’s on all CUDA devices

 Split Array by Device then between each
process

 Amount of Iterations = (sqrt(NUM) +1)/devCount

Host

Device 1

Threads
running in

Parallel

Gather

Device 2

Threads
running in

Parallel

Gather

Device 3

Threads
running in

Parallel

Gather

Device 4

Threads
running in

Parallel

Gather

 Thread creation is very minimal

 Most time spent in device initialization

 Threads computing up to 1000 computations
seems optimal with including device
initialization for timing

 Further research

 Time kernel execution to obtain direct relation to
spawning threads with excluding device time

