
As implemented by Brady Tello
CSE710

SUNY at Buffalo
Fall 2009

MergeSort review (quick)

Parallelization strategy

 Implementation attempt 1

Mistakes in implementation attempt 1
• What I did to try and correct those mistakes

Run time analysis

What I learned

Logical flow of Merge Sort

 The algorithm is largely

composed of two phases

which are readily

parallelizable

1. Split Phase

2. Join phase

 Normally, mergeSort takes

log(n) splits to break the

list into single elements

 Using the Magic cluster’s

CUDA over OpenMP over

MPI setup we should be

able to do it in 3.

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/101/101/10

 For my testing I used 10 of the 13 Dell nodes (for no reason

besides 10 is a nice round number)

 Step 1 is to send 1/10th of the overall list to each dell node for

processing using MPI.

Data =>

Dell Nodes

MPI_SEND

Now on each Dell node, we start up the 4
Tesla co-processors on separate OpenMP
threads

1/10

#pragma openmp parallel

num_threads(4)

initDevice()

 Now we can send ¼ of the 1/10th of the original
list to each Tesla via cudaMemCpy

 At this point CUDA threads can access each
individual element and thus we can begin
merging!

1/10

cudaMemCpy(…,cudaMe

mcpyHostToDevice)

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

 My initial plan for doing this merging was to use a single block of
threads on each device

 Initially each thread would be responsible for 2 list items, then 4,
then 8, then 16 etc.

 Since each thread is responsible for more and more each iteration,
the number of threads can also be decreased.

Grid

Example

Example

Works in theory but CUDA has a limit of 512
threads per block

NOTE: This is how I originally implemented
the algorithm and this limit caused problems

 At this point, the list on each Dell node will consist of
4 sorted lists after CUDA has done it’s work.

 We just Merge those 4 lists using a sequential Merge
function.

1st merge

2nd merge

 final merge

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/101/10

1/10

 Now we can send the data from each Dell Node to a single Dell Node
which we will call the master node.

 As this node receives new pieces of merged data, it will just merge it
with what it has already using the same previously mentioned
sequential merge routine.

 This is a HUGE bottleneck in the execution time!!!

Dell Nodes

MPI_SEND

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

 I tested and implemented this algorithm
using small, conveniently sized lists
which broke down nicely.

Larger datasets caused problems
because of all the special cases in the
overhead
• Spent a lot of time tracking down special cases

• Lots of “off by 1” type errors

Fixing these bugs made it work perfectly
for lists of fairly small sizes

The Tesla coprocessors on the Magic

cluster only allow 512 threads per block.

HUGE problem for my algorithm.

My algorithm isn’t very useful if it can’t

ever get to the point where it

outperforms the sequential version

 If more than 512 threads needed then add another block
 Our Tesla devices allow for 65535 blocks to be created
 Using shared memories, should be able to extend the old

algorithm to multiple blocks fairly easily

Was able to get all the math for breaking
up threads amongst blocks etc.

My algorithm now will run with lists that
are very large…
• But not correctly

There is a problem somewhere in my
CUDA kernel
• Troubleshooting the kernel has proven difficult

since we can’t easily run the debugger (that I
know of).

The algorithm is correct except for a

small error somewhere

Works partially for a limited data size

All results are an approximation to what

they would be if the code was 100%

functional

0

5

10

15

20

25

30

900 4500 9000 45000 90000 450000 900000 45000000 90000000 900000000

s
e

c
o

n
d

s

list size

Sequential merge sort run time (ci-xeon-3)

run time

Running my parallel version using 900,000,000 inputs on 9 nodes

took only 10.2 seconds (although its results were incorrect)

 This graph shows run
time versus the number
of Dell nodes which were
used to sort a list of
900,000 elements.

 Each Dell node has 2
Intel Xeon CPUs running
at 3.33GHz

 Each Tesla co-processor
has 4 GPUs

 The effective number of
processors used is:

#of Dell Nodes*2*4

 Less Processors led

to better

performance!!!

 Why?

• My list sizes are so

small that the only

element which really

impacts performance

is the parallelism

overhead.

Communication setup eats up a lot of
time
• cudaGetDeviceCount()
 Takes 3.7 seconds on average

• MPI setup takes 1 second on average

Communication itself takes up lot of
time.
• Sending large amounts of data to/from several

nodes to/from a single node using MPI was the
biggest bottleneck in the program.

1. Don’t assume a new system will be able

to handle a million threads without

incident… i.e. read the specs closely.

2. When writing a program which is

supposed to sort millions of numbers,

test it as such.

3. Unrolling a recurrence relation requires

a LOT of overhead. New respect for the

elegance of recursion.

