GRID RESOURCE BROKER

ABHISHEK SINGH

CSE Deptt. University at Buffalo

Fall - 2006

Agenda

- Grid Resource Broker- Architecture and Algorithm
- Adaptable Resource Broker (Drawback and Proposed solution)
- SDSC Storage Resource Broker (SRB)
- Future Enhancements

A Sample Grid

Grid Resource Broker

Fig 1. Resource Broker Architecture showing main components of the Design.

Information Service : GIIS

Tell me about the computing resources belonging to the HPC Lab that are uniprocessor Linux workstation, with low CPU load and available memory < 250 Mbyte

XYZ.abc

GIIS

Grid Resource Broker

Fig 1. Resource Broker Architecture showing main components of the Design.

Resource Brokering Algorithm

- Input :- one or more job request
- Action :- Select and submit job to most appropriate resources.
- Output: none
- 1. Contact GIIS server(s) to obtain a list of available clusters.
- 2. Contact each resource's GRIS for static for static and dynamic resource information(hardware and software characteristics, current queue and load, etc.)
- 3. For each job :-

(a) Select the cluster to which the job will be submitted.

i. Filter out clusters that do not fulfill the requirements on memory, disk space architecture etc, and clusters that the user are not authorize to use.

- ii. Estimate the Total Time to Delivery (TTD) for each remaining resource.
- iii. Select the cluster with the shortest predicted TTD.
- (b) Submit the job to the selected resource.
- (c) Release any reservation made to non selected clusters.

Adaptive Grid Resource Broker

$$T_{remaining} = \frac{T_{100\%} - \sum_{i=1}^{n-1} T_i F_i}{F_{estimate}}$$

$$F_{estimate} = \overline{F_n} = \frac{1}{n} \sum_{i=1}^n F_i$$

Adaptable Broker Scenario

Adaptable Broker Scenario

USE OF PROFILER

- Profiler can be used to by the monitor for predicting the parameters like CPU usage memory requirement.
- Sample Profiler (if the incoming process is a Program) can be built by the use of Halstead Complexity Algorithm along with MacCabe cyclomatic complexity algorithm.
- Halstead algorithm can be predict on the size of the program, the difficulty and effort required. This difficulty and effort can be mapped to the processor speed required and the size to the memory required.
- Cyclomatic complexity:- Given a program one can draw its control flow graph G, where each node is a block of code and each branch is decision of branching in that block of code.

Application Performance Feedback

SDSC Storage Resource Broker (SRB)

What is SRB?

- It is a software that sits in between users and resources and provides a storage service by managing users, file locations, storage resources and metadata information
- The SDSC Storage Resource Broker (SRB) is client-server middleware that provides a uniform interface for connecting to heterogeneous data resources over a network and accessing unique or replicated data objects.
- SRB, in conjunction with the Metadata Catalog (MCAT), provides a way to access data sets and resources based on their logical names or attributes rather than their names and physical locations.

SRB Features:-

- It is a distributed but unified file system
- It is a database access interface
- It is a digital library
- It is a semantic web
- It is a data grid system
- It is an advanced archival system

SRB Communication

User File Request

- a) SRB Client sends request for file to SRB server.
- b) SRB Server contacts MCAT Enabled Server (MES).
- c) MES translates query into SQL and sends to database hosting MCAT
- d) Database query returned to MES
- e) Location of file etc returned to SRB Server A.
- f) SRB Server A contacts SRB Server B hosting data file.
- g) Data file transferred to user.

SRB User Interfaces

• InQ – Windows Explorer Style interface to SRB

•Primary highlights includes

•Support for drag and drop between Windows mounted filesystems

•Provisions for access control enforcements, file replication, metadata entry and metadata query.

🛈 ananta @ ralrs mcat.ngs.r	.ac.uk (5544) - inQ 3.1.0 RC - (C) 2004 by SDSC	
<u>SRB Edit View H</u> elp		
S 🕈 🕈 🖉	🔊 🛧 💫 🕋 🖪 🖂 📰 🛛	
backup	Use Resource Container oxresc	
Collections ral ananta.ngsdemo ananta.ralrs ananta @ ralrs: all characteric @ calcos: all	Attribute oxresc atribute rairesc1 atribute rairesc2 rairesc3 sdsc-mda18-fs	
Boddmin (g rains, and backup masdemo.groups man ngsdemo.ngsdemo man npaci.groups man oxford.groups	ppt AddnewZo SRBRefere SRBRefere SRB. Ir 3.0	nstall SRB_Install doc 3.1.doc
 oxfordadmin.oxford public.npaci rairs.groups sdsc.groups srb.sdsc 	TmpBload. 1 TmpBload. 1 fedSRBforN srb.sta	artScript srbPaper.pdf
 Srbadmin, Fairs testuser, sdsc Resources Queries 	srbStorage	
	Collections: 1 - Datasets: 12 - Metad	ata: 1 - Users: 1

SRB User Interfaces

• My SRB Interface – Web browser interface to SRB

•Web based interface to SRB space.

•Works through port 80 and hence works around firewall issues.

🎃 MYSRB - A TransSys	stem Da	ata Explorer - Mozilla Firebir	ď		XC	2 🚳 👛		
<u> Eile E</u> dit <u>V</u> iew <u>G</u> o	<u>B</u> ookmar	ks <u>T</u> ools <u>H</u> elp						4
@ • @ • @ k		http://forth.dl.ac.uk/cgi-bin/mysrb2	2.cgi/ananta			¥ G		
Plug-in FAO GGoogle	Out	ook 🗋 Hotmail 🗋 Yahoo! 🗋 Ner	palnews CLinux Today C freshme	at Reuters	ввс Г	iavarss		»
	77						(D)	^
Collection: Parent Collecti Owner:	AII A ar on: /h ar	Aetadata nanta.eminerals nome nanta@eminerals		bo		S	20	
Move Ingest Create	S Registe	r Register Directory URL SQL	Register Register Make	Make	Browse	Other Onlin	e Exit	> <
<u>Op rile rile i</u>	<u>rue</u>	Directory OKL SQL	OKEData Command Collect	Container	Query 1		MYSKD	
/home/ananta.emineral	s					$\langle O \rangle$		
Function		Data Name	Creation Time	Owner	Replic Numbe	a Version erNumber	Size ,	D: Ty
Get File	~	Acm description.doc	2004-03-16-16.20.26 ana	inta@emineral	s 0	0	37376g	en
Get File	*	Acm description.doc	2004-04-28-20.32.34 ana	inta@emineral	s 1	0	37376g	jen
Get File	*	Acm description.doc	2004-04-28-20.48.08 ana	inta@emineral	s 2	0	37376g	en
Get File	~	AnneDissertation1.pdf	2004-05-06-09.59.01 ana	inta@emineral	s 0	0	418963 g	;en
Get File	~	SRBStorageServer1.3.p	df 2003-10-13-15.21.52 ana	inta@emineral	s 0	0	167796g	en
Get File	~	<u>cclrcTemplate</u>	2004-04-28-21.25.00 ana	inta@emineral	s 0	0	20992 g	;en
Get File	~	plotTest	2004-04-28-20.59.06 ana	inta@emineral	s 0	0	68677 g	en
Get File	~	≣ <u>readme</u>	2004-04-29-12.21.25 ana	inta@emineral	s 0	0	730 g	jen
Get File	~	≣ <u>test</u>	2004-03-31-16.30.00 ana	inta@emineral	s 0	0	17148 g	en
Function		SubCollection	Creation Time	Owner	Y			
Open Collection	~	newColl	2004-04-28-21.07.45 ana	inta@emineral	s			
Open Collection	*	pictures	2004-04-27-16.11.10 ana	inta@emineral	s		(1)	>

Resource Brokering Algorithm

- Input :- one or more job request
- Action :- Select and submit job to most appropriate resources.
- Output: none
- 1. Contact GIIS server(s) to obtain a list of available clusters.
- 2. Contact each resource's GRIS for static for static and dynamic resource information(hardware and software characteristics, current queue and load, etc.)
- 3. For each job :-

(a) Select the cluster to which the job will be submitted.

i. Filter out clusters that do not fulfill the requirements on memory, disk space architecture etc, and clusters that the user are not authorize to use.

- ii. Estimate the Total Time to Delivery (TTD) for each remaining resource.
- iii. Select the cluster with the shortest predicted TTD.
- (b) Submit the job to the selected resource.
- (c) Release any reservation made to non selected clusters.

Enhancements

Steps to optimize the algorithm

- A Resource broker to find the memory and complexity of a incoming process which can be a program.
- Estimating the Total Time to Delivery
- Job queue adaptation. Keep searching for better resources.
- Advance resource reservations.
- Presently there are particular resource brokers like:
- SRB for storage
- Application Level Scheduler (AppLeS) used for scheduling and deploying where tasks have no or little inter-task communication.
- Condor, Nimrod-G etc....
- Take a case where a process needs to execute some database query and need to send the result to some other user. Then the result from the user needs rigorous mathematical calculation which requires high CPU speed and lots of memory.
- ??????

Questions?

References

- Overview of the SDSC Storage Resource Broker By Wayne Schroeder May,2004
- Storage Resource Broker By Arcot Rajasekar, Director, Data Grid Technologies Group SDSC/UCSD.
- A Grid Resource Broker Supporting Advance Reservations and Benchmark-Based Resource Selection :- Erik Elmroth and Johan Tordsson
- A High-Performance Computational Resource Broker for Grid Computing Environments :- Chao-Tung Yang Po-Chi Shih Kuan-Ching Li