
The Open Grid Services
Architecture and Data Grids

Karthik Ram Venkataramani
kv8@cse.buffalo.edu
University at Buffalo

Introduction

Sharing and Coordinated use of diverse
resources in dynamic VO’s.
Need for explicit structure for Grid
Components
OGSA defines an Architecture for the
Grid.
Defines a set of rules that make up a
Grid Service.

Web Services

Technique for describing software
components to be accessed
Define methods for accessing and
discovering the components
Serve as a programming language,
programming model and system
software

Web Service Standards

Simple Object Access Protocol (SOAP)
Messaging between service provider and
requester.
Follows http Request-Response model.
XML envelope to over the message to describe
what is in, and how to process it.
Defines an XML based convention for the Request-
Response.
SOAP payloads can also be carried in FTP, JMS.

Standards …

Web Services Description Language (WSDL)

Standardized XML format for describing network
services
Describes the name, location and ways to
communicate.
Defines web services as a set of endpoints operating
on messages (document oriented or RPC payloads)

Why Web Services ??

WSDL supports dynamic discovery and
composition of services in heterogeneous
environments

A framework based on Web Services can
exploit numerous tools and extant services.

Grid Services and OGSA

Defined as a web service that provides
a set of well defined interfaces and
conventions
Interfaces address

Discovery, Dynamic Service Creation
Lifetime management, notification

Conventions include
Naming services and upgradeability

OGSA …

OGSA defines the semantics of a Grid Service
Instance
Defines basic behavior and does not specify
the what a service does and how it does it.
Doesn't address issues of implementation
programming model, language, tools and
execution environment.

OGSA Technical Details

The OGSA Service Model
Basic Premise: Everything is represented
by a Service
Uniform Service Oriented Model
Specifies core set of consistent interfaces
from which all Grids are implemented
Grid Services maintain internal state for the
lifetime of the Service.

OGSA Service Model …

Grid Service Instance refers to a
particular instantiation of a service.
State oriented service facilitates failure
recovery mechanisms.
OGSA services can be created and
destroyed dynamically.

Grid Service Handle (GSH)

Every Grid service instance is assigned
a globally unique GSH.
GSH carries no protocol specific or
instance specific information.
All instance specific information are
encapsulated in a single abstraction
called Grid Service Reference (GSR)

Grid Service Reference (GSR)

Unlike GSH, GSRs change during the
Service’s lifetime.
GSR has an explicit expiration time
OGSA mappings define mechanisms for
obtaining an updated GSR.
A GSR does not guarantee access to a
Grid service, local grid policies may
enforce their constraints.

Grid Service Interface

OGSA doesn't define a specific set of
services but defines a set of interfaces
for manipulating service models.
A mandatory interface which must be
supported by all Grid Services.
Interface for manipulating service
handles, reference abstractions.

Transient Services: Factories

Services implement this interface to
create new Grid service instances.
This service is called a factory.
CreateService() operation creates a
requested service and returns the GSH
and initial GSR.
Again OGSA does not specify how the
instance is created.

Lifetime Management

Soft-state approach where every instance is
created with a specific lifetime
Initial lifetime can be extended by explicit
client request.
Client can always know when the Grid service
will terminate.
Resource consumption at hosting
environment is always bounded

Managing Handles and
References

GSH lives forever, but GSR expires
A handle-to-reference mapping
interface takes a GSH and returns a
valid GSR.
Mapping operations may be controlled
and requests denied.
Again a valid GSR doesn't promise
access to the grid service

HandleMaps

Every Grid service instance is always
registered with at least one home
handleMap.
GSH includes the handleMap’s identity
All handleMap services are also
identified by a URL
Mapping operation is bound to a single
protocol like HTTP.

Service data and discovery

Each Grid service instance has an
associated service data (usually a
collection of XML elements)
The mandatory GridService interface
defines the operation for querying and
retrieving service data
GSH, GSR, primary key, handleMap etc
are service data members

Service discovery

Process of identifying a subset of GSH’s.
Attributes used include interfaces provided,
number of requests serviced, load, policy
statements etc.
A registry interface provides operations by
which GSH’s can be registered with the
registry service.
Registration is soft-state operation and must
be periodically refreshed.

Notification

OGSA notification framework allows clients to
be notified by messages.
Interface also includes framework for
asynchronous one way delivery of
notifications.
The source must support the OGSA
notificationsource interface.
Clients wishing to receive notifications must
implement notificationsink interface.

Data Grids

Address computational and data
intensive applications
Combine huge amounts of data and
resources which are geographically
distributed
Provide very high availability and
reliability

Issues in Data Grids

Resource scheduling
Data access optimization
Network storage
High speed data transfers
Data Management
Security

Data Grid Services
In most cases Data Management involves file
handling
Typically Data Grids need to handle various types of
data

Files
File Collections
Relational databases
XML Databases
Virtual Data Sets

Data must be identified using a mechanism –Grid
Data Handle (GDH)

Grid data Handle (GDH)

Similar to a GSH in OGSA.
Unique identifier to locate and retrieve
data
GDH is immutable, facilitates location,
tracking, transmission etc

Grid Data Reference and Data
Registry

GDH carries no protocol specific or instance
specific information.
The Grid Data Reference holds all protocol
and instance specific information
GDR includes data location, access protocols
supported, data lifetime and other meta data.
Data Registry holds the mapping from GDH to
GDR

Data Grid and OGSA

Factories
Increase robustness and availability of
services
Transactions are made easy by building on
functionality of factories
Each Component can have a dedicated
factory and be instantiated.

Data Grids and OGSA ..

Registries
Where should registry interfaces be
deployed?
Scalability issues restrict registries to be
kept in as few nodes as possible
Must be kept in nodes which have high
QOS.

Data Grids and OGSA ..

Service Lifetime Management
Keep a set of factories for very long
lifetime and keep them alive using OGSA
lifetime extension mechanisms
Setup factories which create new services
on demand. (Applications are responsible
for keeping services alive)
Redirect incoming applications to existing
services based on loads.

OGSA Summarized .

OGSA provides an architecture for the
Grid
Provides a generic framework for
interoperability among heterogeneous
service implementations
Uses the web service model for building
a Grid service architecture

OGSA Summarized …
Specifies GridService as a mandatory
interface to be included. The GridService port
has three operations

FindServiceData()
Destory()
SetTerminationTime()

OGSA standard service ports are
HandleMap
Registy
Factory

ISSUES ..

Dealing with service overloads, VO
partitioning, factory/registry
unavailability
Elaboration on QOS metrics, probably
make them as a separate namespace
that can be queried
Enforcing local and VO wide security
policies, local or global authorization?

References
Grid Computing-
Making the Global Infrastructure a Reality.
Fran Berman, Geoffrey Fox, Anthony Hey

http://www-fp.globus.org/ogsa/

An Analysis of The Open Grid Services Architecture
Dennis Gannon, Kenneth Chiu, Madhusudhan Govindaraju,
Aleksander Slominski
Department of Computer Science, Indiana University, IN

