
SPECTRUM.IEEE.ORG  |  North American  |  APR 2017  |  23

iS
to

c
k

p
h

o
to

ver 350 computer science stu-
dents take Russ Miller’s Discrete
Structures course every fall se-

mester. About 90 percent are freshmen. By
week five, they are breaking problems into
small chunks and learning ways to solve
each chunk at the same time—in parallel.

Today, multicore processors power our
laptops and cellphones. Distributed cloud
servers or supercomputer clusters process
large data sets to improve Facebook news
feeds or predict the weather. To take full ad-
vantage of these systems, you need parallel
algorithms. “It’s a parallel world,” says Miller,
a computer scientist at the State University of
New York at Buffalo. “Why is no one teaching
a course in parallel algorithms to freshmen?”

Currently, most introductory computer sci-
ence courses start with sequential program-
ming, in which the computer performs just
one instruction at a time. Universities that in-
tegrate parallel thinking into their undergrad-
uate curricula tend to offer only an upper-level
elective. Others that do spread parallelism
throughout the curriculum start no sooner

than the second or third course. University
needs can vary, but Miller believes that teach-
ing parallel thinking “becomes harder the lon-
ger you wait,” whereas it can become “second
nature” if you do it early enough. So in 2013,
Miller changed the State University at Buffalo
discrete mathematics course to teach paral-
lel algorithms. It has no prerequisites.

He says that most required discrete math-
ematics courses teach some material stu-
dents won’t need until their junior or senior
year. “That’s just the most ridiculous waste of
everybody’s time,” he says. “They just check
out.” After spending three or four weeks cover-
ing the basics of standard logical thinking and
divide-and-conquer strategies, Miller dives
into parallelism. He gives context by first ex-
plaining 1960s- to 2000s-era parallel com-
puting architectures. The rest of the semester
he dives into general, hardware-agnostic par-
allel algorithms for tasks such as searching
and sorting. Students learn about such top-
ics as image-segmentation applications.

After each lesson about a new algorithm,
students mathematically analyze its theoreti-

cal performance on old parallel hardware ar-
chitectures. They learn some ways to change
the algorithm to work on modern, real-world
architecture, such as a cloud or grid.

Because it’s not about programming per
se, Miller can skip thorny implementation
details, such as syntax or debugging meth-
ods, and have plenty of time to teach stu-
dents a parallel-first mind set.

“Something like that could work,” says
Mehran Sahami, a computer scientist at
Stanford who cochairs the Association for
Computing Machinery steering commit-
tee on computing curricula. The ACM and
the IEEE jointly introduce new guidelines
roughly every 10 years: The latest, issued
in 2013, recommend integrating parallel
education throughout the curriculum.

But some educators find their ability to
deeply embrace parallelism is constrained
by other demands. Some instructors of in-
troductory computer science courses, such
as Steven Bogaerts at DePauw University
in Greencastle, Ind., spend about a week
on threads (subsections of a program that
can run in parallel) and how to stop them
from accessing the same resources at the
same time. But to Bogaerts, “it’s just al-
ready a very full course,” so it’s hard to do
much more.

And some point out that there’s more to en-
hancing code performance than just parallel-
ism. “Of all the ways of getting performance,
parallelism is among the hardest,” says
Charles E. Leiserson, a computer scientist
at MIT who teaches a junior- and senior-level
course on performance engineering. Leiser-
son says that parallelizing algorithms doesn’t
guarantee they’ll run faster than sequential
algorithms when you implement them on real
hardware. He says other factors are impor-
tant to manage and understand, such as the
memory hierarchy or compiler.

Miller, who does not cover the memory
hierarchy outside of small examples, is op-
timistic about his students’ futures. He says
they have three-and-a-half years to learn
how to write efficient code. In his course,
they’re learning to solve problems at a high
level. “I want them to think that the world’s
open to them,” he says. —Andrew Silver

RESOURCES_Education

O

Rethinking CS101
Russ Miller wants
students to embrace
parallel architectures
from day one

04.Resources.INT - 04.Resources.NA [P]{NA}.indd 23 3/13/17 12:42 PM

