
electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

SnB version 2.2: an example of crystallographic multiprocessing

Jason Rappleye, Martins Innus, Charles M. Weeks and Russ Miller

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2002). 35, 374–376 Jason Rappleye et al. � Multiprocessing in SnB

computer programs

374 Jason Rappleye et al. � Multiprocessing in SnB J. Appl. Cryst. (2002). 35, 374±376

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 1 March 2002

Accepted 28 March 2002

2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

SnB version 2.2: an example of crystallographic
multiprocessing

Jason Rappleye,a Martins Innus,a,b Charles M. Weeksc* and Russ Millera,b,c

aCenter for Computational Research, Norton Hall Rm 9, SUNY at Buffalo, Buffalo, NY 14260-1800, USA,
bDepartment of Computer Science and Engineering, Bell Hall, SUNY at Buffalo, Buffalo, NY 14260-1800, USA,

and cHauptman-Woodward Medical Research Institute and Dept. of Structural Biology, SUNY at Buffalo, 73 High

Street, Buffalo, NY 14203-1196, USA. Correspondence e-mail: weeks@hwi.buffalo.edu

The computer program SnB implements a direct-methods algorithm, known as

Shake-and-Bake, which optimizes trial structures consisting of randomly

positioned atoms. Although large Shake-and-Bake applications require

signi®cant amounts of computing time, the algorithm can be easily implemented

in parallel in order to decrease the real time required to achieve a solution. By

using a master±worker model, SnB version 2.2 is amenable to all of the prevalent

modern parallel-computing platforms, including (i) shared-memory multi-

processor machines, such as the SGI Origin2000, (ii) distributed-memory

multiprocessor machines, such as the IBM SP, and (iii) collections of

workstations, including Beowulf clusters. A linear speedup in the processing

of a ®xed number of trial structures can be obtained on each of these platforms.

1. Introduction

Shake-and-Bake is a direct-methods procedure that makes possible

the ab initio phasing of crystal structures containing as many as 2000

independent non-H atoms provided that accurate diffraction data

have been measured to a resolution of 1.2 AÊ or better (FrazaÄo et al.,

1999). It has also been used to determine the anomalously scattering

substructures of selenomethionyl-substituted proteins containing as

many as 160 selenium sites using 3±4 AÊ data (Frank von Delft,

personal communication). Shake-and-Bake belongs to the class of

phasing methods known as `multisolution' procedures (Germain &

Woolfson, 1968) in which multiple sets of trial phases are generated in

the hope that one or more of the resultant combinations will lead to a

solution. Solutions, if they occur, are identi®ed on the basis of a

suitable ®gure of merit.

The distinctive feature of Shake-and-Bake is the repeated and

unconditional alternation of reciprocal-space phase re®nement

(Shaking) with a complementary real-space process (Baking) that

seeks to improve phases by applying constraints (Weeks et al., 1994).

This automated recycling has proven to be considerably more

powerful than previous direct methods. Phases are re®ned either by

the tangent formula (Karle & Hauptman, 1956) or by constrained

minimization of the so-called minimal function (DeTitta et al., 1994)

using the parameter-shift algorithm (Bhuiya & Stanley, 1963). The

minimal function also serves as an effective ®gure of merit. Peak

picking is used to impose the atomicity constraint in real space. A

random-number generator is used to assign initial coordinates to the

atoms comprising trial structures, and structure-factor calculations

are performed to generate sets of starting phases. The complete

Shake-and-Bake algorithm has been described in detail in recent

reviews (Weeks et al., 2001; Sheldrick et al., 2001).

SnB is a user-friendly computer program that implements the

Shake-and-Bake procedure. SnB version 1.0 (Miller et al., 1994)

provided a simple ASCII menu for users to input structure-speci®c

information and, if necessary, make changes to the default values

provided for the operating parameters (e.g. the numbers of phases,

re®nement cycles, and peaks to be selected). SnB version 2.0 (Weeks

& Miller, 1999) introduced a graphical user interface (GUI), written

in Java, not only for the main Shake-and-Bake phasing algorithm, but

also for computing the necessary normalized structure-factor

magnitudes using the DREAR program suite (Blessing & Smith,

1999, and references therein). The GUI allows for input of para-

meters, selection of data ®les, and the submission of jobs to perform

the actual computations using the back-end Fortran executables. The

repetitive shuttling of trial structures between real and reciprocal

space gives SnB its power, but the need to perform two Fourier

transformations in each cycle yields a computationally intensive

procedure. Fortunately, each of the trial structures can be re®ned

independently. Therefore, the algorithm readily lends itself to a

simple coarse-grained parallel approach in which trial structures are

distributed among numerous processors. The SnB interface provided

in the most recent version, SnB version 2.2, makes it easy for users to

take full advantage of the opportunities they have for coarse-grained

parallel processing. The features of the SnB interface that expedite

parallel operation are described in detail in the following sections.

2. The master±worker model

The master±worker paradigm is suitable for a wide variety of algo-

rithms, including SnB, that can be readily adapted to a parallel-

processing environment. A single master process is responsible for

allocating tasks (i.e. the re®nement of trial structures) to be

completed by multiple worker processes. As the workers ®nish their

tasks, the master gathers the results and assigns new tasks to available

workers until the whole job has been completed. The fact that each

task is independent of all the others allows for very little processing

overhead.

2.1. Multiprocessor machines

There are two different ways in which SnB has been equipped to

increase throughput on machines having multiple processors. First,

the version of the SnB executable available for IBM SP systems

electronic reprint

utilizes the message-passing interface MPI (Snir et al., 1998) to

perform explicit communication between processes during execution.

In a program utilizing MPI, all processes are started simultaneously,

and each is assigned a unique rank. In the case of SnB, the process

with rank zero is designated as the master, and all remaining

processes are workers. The master reads in the re¯ection data ®le and

a control ®le produced by the GUI, and it transfers their contents to

the workers. The master then enters a loop in which it assigns a ®xed

number of trials to each of the workers. If, for some reason, one node

processes trials much more slowly than the other nodes, it will not

degrade the overall throughput by a large amount. As each worker

completes its batch of trials, the results are returned to the master,

which responds by assigning that worker a new batch of trials. This

procedure is repeated until the number of trials requested by the user

has been completed. The master produces a single set of output ®les

that combine the results of all the worker processes. Currently, one

disadvantage of running an MPI job is the requirement that all

processors be free at the outset, and this may result in a delay in

initiating the jobs.

The second way in which SnB exploits the master±worker model is

by simultaneously running multiple serial jobs, each of which runs

exactly the same number of trial structures. Multiple control ®les are

written, and the number of the trial structure at which processing is to

begin is varied in these ®les in an appropriate manner. Each job runs

independently of every other job, and there are no dependencies

between jobs. Consequently, individual jobs can be started at any

time, and no cycles are wasted waiting for a certain number of

processors to become free. Each job produces its own set of output

®les, and no attempt is made to combine them into a single set of

output ®les. However, as described below (x3), the GUI presents a

composite view of the output from the multiple jobs so this is not

normally a concern.

2.2. Networks

Condor (Litzkow et al., 1988) is a system for utilizing available

unused computing cycles on a network of workstations (typically

referred to as a Condor `¯ock'). The primary user of a workstation,

hereafter called the `owner', often utilizes the machine only during

the time he or she is at work. Valuable computing resources are

wasted because workstations frequently sit idle during evenings,

weekends and vacations. Condor allows these unused resources to be

allocated so that other people can take advantage of them to run jobs.

Condor is a batch queuing system that queues user-submitted jobs

and runs them when the appropriate resources are available. Tradi-

tional batch queuing systems, such as PBS, LSF and the Loadleveler

system of an IBM SP, utilize a pool of dedicated machines to provide

compute cycles. Condor differs from these traditional systems in that

its pool of resources consists of a network of workstations that are

sometimes reserved for use by their owners, whether it be for inter-

active purposes (e.g. sur®ng the web, reading e-mail, editing code) or

for running their own codes locally. Condor is able to detect when

machines in the pool it manages are idle, in which case it utilizes them

to run jobs submitted via the Condor queue. If a workstation claimed

by Condor becomes unavailable due to owner activity, Condor

suspends the job so that it will not interfere with the machine's

normal operation. If the workstation remains unavailable to Condor

for a certain speci®ed period of time (con®gurable for each machine

in the Condor ¯ock), the job is `checkpointed' and removed from the

machine. The checkpointing process saves the state of the job so that

it may be restarted on the same machine, or even on a different

machine. The workstations in a Condor ¯ock do not need to share a

®le system. Condor intercepts system calls made by an application

and executes them on the machine that submitted the job. For

example, when an `open' system call is performed, Condor executes

the call on the machine that submitted the job and passes the results

to the caller. This facility makes the migration of checkpointed

processes much easier, reducing the dependence on local resources.

SnB has been enhanced to run on a Condor ¯ock. For n SnB jobs

submitted through the Condor interface in SnB, the GUI submits n

serial jobs to Condor, dividing the trial structures equally among the

jobs. Each job runs as the resources required become available. The

end result, from the SnB user's perspective, is the same as if the

multiple serial jobs had been run on a single machine with multiple

processors. For more information regarding Condor, the reader is

referred to http://www.cs.wisc.edu/condor/.

3. Using the multiprocessing features

When the SnB graphical interface is invoked, the user is presented

with several screens containing ®elds in which to enter data as well as

buttons to perform pertinent tasks (Weeks & Miller, 1999). For

example, the `General Information' screen allows the user to supply

structure-speci®c information (such as space group, cell constants,

etc.). The `Create Es' screen controls the data normalization process,

and several other screens permit the user to examine and change the

parameters that control the Shake-and-Bake phasing procedure.

The `Run SnB' screen (Fig. 1) facilitates multiprocessing applica-

tions. It allows the user to specify how, using the available computing

resources, the phasing job is to be carried out. First, the user must

indicate if the job is to be run on the local computer or submitted to a

batch processing system such as PBS, LoadLeveler or Condor. In all

cases, the name of the job (to be used to identify output ®les) must be

given, and the desired number of processes (subjobs) must be indi-

cated. If multiprocessing capabilities are not available, the number of

processes should be speci®ed as `1'. One or more jobs can then be

submitted to the local computer (or to a network of computers via

Condor) simply by clicking the `Process Trials' button. The `Custom'

queuing option permits the user to create control (dat) ®les for

multiple jobs that can be submitted later via a queuing system that is

not supported directly by the SnB interface.

J. Appl. Cryst. (2002). 35, 374±376 Jason Rappleye et al. � Multiprocessing in SnB 375

computer programs

Figure 1
The `Run SnB' screen of the SnB interface helps the user to take advantage easily
of multiprocessing options. In this example, an eight-processor job (`test') is being
submitted to a Linux cluster via a PBS queue (`vlong'). See the text for further
explanation.

electronic reprint

computer programs

376 Jason Rappleye et al. � Multiprocessing in SnB J. Appl. Cryst. (2002). 35, 374±376

In particular, if the PBS or LoadLeveler batch queuing systems are

chosen, then the user must enter the information requested in the

®elds, including the queue name, queue type, the directory for staging

®les, and additional batch-queuing-speci®c parameters. For example,

suppose a user chooses to run eight SnB processes. Then, if the user

chooses a serial queue type, SnB will submit eight single-processor

jobs to the queue, while if the user chooses one of the available

parallel queues, SnB will submit a single eight-processor job.

The time spent waiting in a queue is dependent on the site's

scheduling policy. However, note that it is typically the case that a

serial job will start as soon as a single processor becomes free, while a

parallel job that requires n processors will typically have to wait until

n processors are free. Therefore, having both the serial and parallel

options available is useful in terms of optimizing utilization based on

available computing platforms, scheduling systems and scheduling

policies.

The `Evaluate Trials' screen (Fig. 2) provides a consistent and

convenient interface for analyzing the output of SnB jobs, regardless

of the manner in which they were run. An SnB job name appears only

once in the `Review Results' box regardless of whether the job

involved one or many processes. The output of each SnB process

consists of several ®les containing information regarding the set of

trial structures examined by that process. The names of these output

®les are pre®xed with the user-selected identi®er followed by an

underscore and a number indicating the rank of the respective

process. For example, the `peak' ®les containing the fractional coor-

dinates for the best trial structures for an eight-processor job where

the pre®x is `test' would be named test_0.SnB_peak,

test_1.SnB_peak, . . . , and test_7.SnB_peak. For a single

processor job, the GUI simply presents the data from each of the

output ®les as requested. For multiprocessor jobs, the GUI examines

each set of output ®les and presents the composite information to the

user. The on-line documentation provided within SnB provides

detailed help for analyzing the results of SnB jobs.

4. Conclusion

The direct-methods program SnB can be run conveniently in a variety

of parallel-processing environments. Since each trial structure can be

processed independently, throughput increases linearly with the

number of processors being used. SnB version 2.2 is available for

computers running IRIX, OSF/1, AIX, Solaris, Alpha Linux, and

Intel Linux. Further, it provides support for many of the popular

queuing systems, including LoadLeveler and PBS. Executable copies

of SnB can be obtained by clicking the `Download' button on the SnB

home page at http://www.hwi.buffalo.edu/SnB/. Users requiring

assistance utilizing the multiprocessing features described here can

submit inquiries to snb-help@hwi.buffalo.edu.

The development of SnB is supported by grants GM-46733 (NIH)

and ACI-9721373 (NSF), a DOE Grand Challenge grant, and the

Center for Computational Research at SUNY-Buffalo.

References

Bhuiya, A. K. & Stanley, E. (1963). Acta Cryst. 16, 981±984.
Blessing, R. H. & Smith, G. D. (1999). J. Appl. Cryst. 32, 664±670.
DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R. & Hauptman, H. A. (1994).
Acta Cryst. A50, 203±210.

FrazaÄo, C., Sieker, L., Sheldrick, G. M., Lamzin, V., LeGall, J. & Carrondo, M.
A. (1999). J. Biol. Inorg. Chem. 4, 162±165.

Germain, G. & Woolfson, M. M. (1968). Acta Cryst. B24, 91±96.
Karle, J. & Hauptman, H. (1956). Acta Cryst. 9, 635±651.
Litzkow, M., Livny, M. & Mutka, M. (1988). Proceedings of the 8th
International Conference of Distributed Computing Systems, pp. 104±111.
Los Alamitos, CA: IEEE Computer Society.

Miller, R., Gallo, S. M., Khalak, H. G. & Weeks, C. M. (1994). J. Appl. Cryst.
27, 613±621.

Sheldrick, G. M., Hauptman, H. A., Weeks, C. M., Miller, R. & UsoÂ n, I. (2001).
International Tables for Crystallography, Vol. F, edited by M. G. Rossmann
& E. Arnold, pp. 333±345. Dordrecht: Kluwer Academic Publishers.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D. & Dongarra, T. (1998). MPI:
The Complete Reference, Vol I, The MPI Core. Cambridge, MA: MIT Press.

Weeks, C. M., DeTitta, G. T., Hauptman, H. A., Thuman, P. & Miller, R. (1994).
Acta Cryst. A50, 210±220.

Weeks, C. M. & Miller, R. (1999). J. Appl. Cryst. 32, 120±124.
Weeks, C. M., Sheldrick, G. M., Miller, R., UsoÂ n, I. & Hauptman, H. A. (2001).
Advances in Structure Analysis, edited by R. Kuzel & J. Hasek, pp. 37±64.
Praha: Czech and Slovak Crystallographic Association.

Figure 2
The `Evaluate Trials' screen of the SnB interface facilitates analysis of a Shake-and-
Bake phasing job. By clicking buttons such as `View Histogram', the user will see
the composite results for the test job.

electronic reprint

