
Multisearch Techniques: Parallel Data Structures

on Mesh-Connected Computers �

Mikhail J. Atallahy

Department of Computer Science

Purdue University

West Lafayette, IN 47907, USA.

Frank Dehnez

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6.

Russ Millerx

Department of Computer Science

State University of New York at Bu�alo

Bu�alo, NY 14260, USA.

Andrew Rau-Chaplin{

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6.

Jyh-Jong Tsayk

National Chung Cheng University

Institute of Computer Science

and Information Engineering

Chiayi, Taiwan 62107, ROC.

February 16, 1996

�A preliminary version of this work appeared in the Proceedings of the 1991 ACM

Symposium on Parallel Algorithms and Architectures (pp. 204-214).
yResearch partially supported by the O�ce of Naval Research under Contracts N00014-

84-K-0502 and N00014-86-K-0689, the Air Force O�ce of Scienti�c Research under Grant

AFOSR-90-0107, the National Science Foundation under Grant DCR-8451393, and the

National Library of Medicine under Grant R01-LM05118.
zResearch partially supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.
xResearch partially supported by the National Science Foundation under Grant IRI-

8800514.
{Research partially supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.
kResearch partially supported by the O�ce of Naval Research under Contract N00014-

84-K-0502, the Air Force O�ce of the Scienti�c Research under Grant AFOSR-90-0107,

the National Science Foundation under Grant DCR-8451393, and the ROC National Sci-

ence Council under Contract NSC80-0408-E194-13.

1

F D
M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. Tsay, "Multisearch techniques for implementing data structures on a mesh-connected computer," Journal of Parallel and Distributed Computing, Vol. 20, 1994, pp. 1-13.

Abstract

The multisearch problem is de�ned as follows. Given a data struc-

tureD modeled as a graph with n constant-degree nodes, perform O(n)

searches on D. Let r be the length of the longest search path associ-

ated with a search process, and assume that the paths are determined

\on-line". That is, the search paths may overlap arbitrarily.

In this paper, we solve the multisearch problem for certain classes of

graphs in O(
p
n+r

p
n

logn
) time on a

p
n�
p
nmesh-connected computer.

For many data structures, the search path traversed when answering

one search query has length r = O(logn). For these cases, our algo-

rithm processes O(n) such queries in asymptotically optimal �(
p
n)

time. The classes of graphs we consider contain many of the impor-

tant data structures that arise in practice, ranging from simple trees

to Kirkpatrick hierarchical search DAGs.

Multisearch is a useful abstraction that can be used to implement

parallel versions of standard sequential data structures on a mesh.

As example applications, we consider a variety of parallel online tree

traversals, as well as hierarchical representations of polyhedra and its

myriad of applications (lines-polyhedron intersection queries, multiple

tangent plane determination, intersecting convex polyhedra, and three-

dimensional convex hull).

2

1 Introduction

Let D be a data structure modeled as a graph G with n constant-degree

nodes. The multisearch problem consists of performing O(n) searches on

D, where the searches need not be processed in any particular order. Fur-

ther, the searches may be simultaneously processed in parallel by using, for

example, one processor per search. However, the path that an individual

search will trace in G is not known ahead of time, and must instead be de-

termined \on-line". That is, only when a search query is at node v of G can

it determine which node of G it should visit next. (This is accomplished by

comparing the search key to the information stored at v. It should be noted

that the nature of the information stored at the nodes, as well as the nature

of the comparison that is performed at every node, depends on the speci�c

problem being solved.) It is important to note that the paths of the search

queries can overlap arbitrarily. That is, at any time, any node of G may be

visited by an arbitrary number of search queries.

Multisearch is a useful abstraction that can be used to implement parallel

versions of standard sequential data structures on a mesh. The Multisearch

problem is a challenging problem both for EREW-PRAMs and for networks

of processors. This is due to the fact that many search queries might want

to visit a single node of G, creating a \congestion" problem. In fact, this

problem of congestion can be complicated by the fact that we cannot even

tally ahead of time the amount of congestion that will occur at a node, since

we do not know ahead of time the full paths of the search queries, only

the nodes of G at which the queries start. On the PRAM, the graph G is

stored in the shared memory in the standard way. When the parallel model

used to solve the problem is a network of processors, the graph G is initially

stored in the network such that each processor contains one node of G, as

well as that node's adjacency list. It is important to keep in mind that the

computational network's topology is not the same as the search structure G,

so that a neighbor of node v in G need not be stored in a processor adjacent

to the one containing v. 1 Initially, the O(n) search queries are arbitrarily

distributed one per processor.

In the EREW-PRAM, the di�culty of providing an e�cient solution

to the multisearch problem comes from the \exclusive read" restriction of

the model. A very elegant way around this restriction was given by Paul,

1Note that due to the congestion problem, even an e�cient embedding of the graph G

into the network will not lead to an e�cient multisearch algorithm.

3

Vishkin and Wagener [26] for the case where G is a 2-3 tree. However,

it should be noted that they assume a linear ordering on the search keys.

We cannot a�ord to make this assumption since we consider applications

involving multidimensional search keys for which no linear ordering can be

used.

The multisearch problem appears to be even more challenging for net-

works of processors than it is for the EREW-PRAM, due to the fact that

the data structure is distributed over a network. Furthermore, similar to the

EREW-PRAM, each memory location can be accessed only by a constant

number of search queries at a time since a processor containing, say, node v's

information would be unable to simultaneously store more than a constant

number of search queries.

The main contribution of this paper is in solving the multisearch prob-

lem for certain classes of graphs in �(
p
n + r

p
n

logn
) time on a

p
n �

p
n

mesh-connected computer, where r is the length of the longest search path

associated with a query. Note that for many data structures the search path

traversed when answering a query has length r = O(logn). For this situa-

tion, our algorithm processes O(n) search queries in asymptotically optimal

�(
p
n) time.

The classes of graphs considered include many important data structures

that arise in practice, ranging from simple trees to the powerful Kirkpatrick

hierarchical search DAGs that are so important to solving problems in com-

putational geometry. We will show how to exploit our multisearch algorithm

to e�ciently implement parallel online tree traversals as well as to traverse

hierarchical representations of polyhedra. The latter yield solutions to prob-

lems including lines-polyhedron intersection queries, multiple tangent plane

determination, three-dimensional convex hull2, and intersection of convex

polyhedra. Notice that these problems are of considerable importance in

robotics, solid modeling, computational geometry, vision, and pattern recog-

nition, to name a few.

We believe that the multisearch problem is such a fundamental problem

that we expect it to have additional applications (e.g., in parallel databases

and related areas).

The multisearch problem for hypercube multiprocessors was studied in [8].

The hypercube technique presented in [8] was based on the idea of moving

2The 3-D convex hull problem has optimal mesh solutions recently obtained [20, 16]

independently of ours and using very di�erent, purely geometric approaches, rather than

the multisearch method we use.

4

the search queries synchronously through G, and required time proportional

to the diameter of the network to move all queries to the next nodes' in their

search paths. Unfortunately, such an approach is not viable on the mesh,

since in order to obtain an optimal mesh algorithm to solve the multisearch

problem, the time per advancement of all queries by one step needs to be

O(
p
n

logn
), which is less than the diameter of the network. The techniques we

use to solve the multisearch problem for the mesh are very di�erent from

those used in [8], and they are also very di�erent from those used in [26].

In very broad terms, our techniques for solving the multisearch problem

are a judicious combination of the following ideas.

� PartitionG into pieces, some of which are processed sequentially, while

others are processed in parallel.

� Create multiple copies of those pieces of G for which too many searches

need access, and distribute the copies to disjoint submeshes, each of

which is responsible for advancing a manageable subset of the \con-

gested" searches. It should be noted that the straightforward strategy

of making multiple copies of G, and using one copy for each search,

does not work. This is due to the fact that it would not only take too

much time to create the O(n) copies, but there is not enough space to

store all of these copies of G. In fact, there is only enough space to

store �(1) copies of G, since G has n nodes.

� Map some pieces of G into suitably shaped portions of the mesh, which

are not necessarily rectangular submeshes.

Of course, the parameters needed to e�ciently perform these partition-

ing, duplication, and mapping strategies cannot be pre-computed, since the

full search paths are computed on-line. Therefore, these parameters must

also be determined on-line, as the searches advance through G. The above

description is necessarily an over simpli�cation, and only a careful look at

the details can reveal the exact interplay between the above ideas, as well

as the exact nature of each.

The classes of graphs considered in this paper include hierarchical di-

rected acyclic graphs (i.e., hierarchical DAGs) and partitionable graphs,

which contain many important data structures that arise in practice.

Hierarchical DAGs consist of a vertex set that can be partitioned into

h = O(logn) levels, L0; : : : ; Lh, such that every edge is from some Li to

5

Li+1, jL0j = 1, and c1�
i � jLij � c2�

i, for some � > 1 and positive con-

stants c1 and c2. An important member of this class of graphs is the Kirk-

patrick subdivision hierarchies [19]. Once an optimal mesh implementation

of multisearch for these graphs is obtained, new optimal mesh algorithms

for numerous geometric problems follow immediately.

Partitionable graphs will be de�ned in detail later, but it should be noted

that an important member of this class of graphs is the balanced k-ary

tree. For partitionable graphs, we consider the multisearch problem for both

the undirected and the directed case. For tree data structures, the directed

partitionable graphs model tree algorithms for which search queries move

along tree edges only in one direction, either from the root towards the

leaves, or from the leaves towards the root. Many standard tree searches

are of this type. Undirected partitionable graphs model tree algorithms for

which search queries are permitted to move within the tree in an arbitrary

manner. Such cases arise when queries are traversing parts of a tree, for

example, in inorder. Note that other instances of the multisearch problem

for search trees have been further studied in [31].

The next section contains a more formal de�nition of the multisearch

problem, and of the various terms used in the paper. Sections 3.1 and 3.2

contain the main results: our solutions to the multisearch problem for each

of the above-mentioned classes of graphs. Section 4 illustrates the use of

multisearch to solve various problems e�ciently on the mesh.

2 De�nitions

In this section we will de�ne the model of computation, the multisearch

problem, and the classes of graphs for which we will present e�cient multi-

search algorithms in Section 3.

2.1 The Mesh-Connected Computer

The mesh-connected computer (mesh) of size n is a SIMD machine with n

simple processors arranged in a square lattice. To simplify the exposition,

it is assumed that n = 4c, for some integer c. For all i; j 2[0,. . . ,n1=2 � 1],

let Pi;j represent the processor in row i and column j. Processor Pi;j is con-

nected via bidirectional unit-time communication links to its four neighbors,

Pi�1;j , Pi+1;j , Pi;j�1, and Pi;j+1, assuming they exist. Each processor has a

�xed number of �(logn) bit words of memory (registers), and can perform

6

standard arithmetic and Boolean operations on the contents of these regis-

ters in unit time. Each processor can also send or receive a word of data to

or from one of its neighbors in unit time.

The communication diameter of a mesh of size n is �(
p
n), as can be

seen by examining the distance between processors in opposite corners of

the mesh. This means that if a processor in one corner of the mesh needs

data from a processor in another corner of the mesh at some time during

an algorithm, then a lower bound on the running time of the algorithm is

(
p
n). It is easy to see that, because of the communication diameter, the

problems in this paper have time complexities
(
p
n).

In this paper, we will frequently use �(
p
n) time standard mesh opera-

tions such as sorting, random access read, random access write, compression,

parallel pre�x, and list ranking [4, 23, 24, 25, 29].

2.2 The Multisearch Problem

Let G = (V;E) be a directed or undirected graph of size n = jV j+jEj, where
the out-degree or degree, respectively, of any vertex is bounded by some

constant. Let U be a universe of possible search queries on G. De�ne the

search path of a query q 2 U , denoted path(q), to be a sequence of h vertices
(v1; :::; vh) of G de�ned by a successor function f : (V [start)� U ! V as

� f(start; q) = v1, and

� f(vi; q) = vi+1 for i = 1; : : : ; h� 1.

The function f has the following properties.

� If G is directed, then for every vertex v 2 V and query q 2 U ,

(v; f(v; q))2 E.

� If G is undirected, then for every vertex v 2 V and query q 2 U ,

fv; f(v; q)g 2 E.

� f(v; q) can be computed in �(1) time by a single processor that con-

tains the information pertinent to q and v.

We say that a query q 2 U visits a node v 2 V at time t if and only

if, at time t, the mesh is in a state where there exists a processor which

contains a description of both the query q and the node v. (Note that this

de�nition implies that many queries can simultaneously visit node v, if each

such query uses a di�erent copy of v's information.) The search process for

7

a search query q with search path path(q) = (v1; :::; vh) is a process divided

into h time steps, t1 < t2 < : : : < th, such that at time ti, 1 � i � h, query

q visits node vi. We will refer to the change of state between ti and ti+1,

1 � i < h, as advancing query q one step in its search path. It is important

to note that we do not assume the search path to be given in advance. In

fact, we assume that the search path for each query is constructed online

during the search by successive applications of the function f .

Note that for a directed graph, a query can be advanced along an edge

only in the indicated direction, whereas for undirected graphs a query can

advance along an edge in both directions.

Given a set Q = fq1; :::; qmg � U of m search queries, where m = O(n),

then themultisearch problem for Q on G consists of executing (in parallel) all

m search processes induced by the m search queries. It is important to note

that the m search processes can overlap arbitrarily. That is, at any time t,

any node of G may be visited by an arbitrary number of queries, which may,

in fact, be at very di�erent time steps in their respective search paths (of

course each such query would be using a di�erent copy of v's information).

We will refer to the process of advancing, in parallel, a subset of the m

search queries by one step in their respective search paths as a multistep.

Notice that we do not require all queries to be advanced synchronously. We

will refer to a sequence of multisteps which has the property that every

search query is advanced
(logn) steps in its respective search path, as a

log-phase.

A convenient way of visualizing the multisearch process is by associating

a pebble with each query. Initially, the pebble associated with query q is

placed on the �rst node in path(q). During the multisearch process, the

m pebbles move in parallel along edges of G, each pebble according to its

respective search path. Each node of the graph may be visited, at any time,

by an arbitrary number of pebbles. Notice that if G is undirected, then

pebbles move freely along edges of the graph, while if G is directed, then

pebbles can only move in the proper direction of an edge. Note that, pebbles

may move with di�erent and possibly changing speeds.

For the remainder of this paper, we will assume that G is connected

(by a \connected" directed graph we mean that the undirected version of

that graph is connected). For graphs with several connected components,

the multisearch algorithms described in Sections 3.1 and 3.2 can be easily

applied independently and in parallel to each connected component, such

that the overall time complexity remains unchanged.

8

2.3 Hierarchical DAGs

Let G = (V;E) be a directed acyclic graph with vertex set V , edge set E,

and size n = jV j + jEj, where the out-degree of any vertex is bounded by

some constant. The graph G is called a hierarchical DAG of size n and

height h if and only if V can be partitioned into h + 1 subsets L0; : : : ; Lh
such that

1. h = O(logn),

2. jL0j = 1,

3. There exists a constant � > 1 such that, for all i 2 f0; : : : ; h � 1g,
jLi+1j = �jLij.

4. for every directed edge (v; w) 2 E, there exists an i 2 f0; : : : ; h� 1g
such that v 2 Li and w 2 Li+1.

See Figure 1 for an illustration. The subsets L0; : : : ; Lh are called the levels

of G. For a node v 2 Li, the index i is called the level index of v. Notice

that Requirement 3 implies that jLij = �i. This requirement is introduced

to simplify the exposition of our algorithm in Section 3.1. However, our

algorithms can be easily adapted to the case c1�
i � jLij � c2�

i, for some

positive constants c1 and c2. It should be noted that subdivision hierarchies,

as described in [19], are hierarchical DAGs.

2.4 Partitionable Graphs

2.4.1 �-Splitters

Let G = (V;E) be a (directed or undirected) graph with vertex set V , edge

set E, and size n = jV j+ jEj. Let S � E. Then (V;E� S) is a graph with

vertex set V and edge set E � S that consists of a set of k � n connected

components, denoted fG1; : : : ; Gkg.
We de�ne S to be a �-splitter of G, 0 < � < 1, if and only if jGij =

jVij + jEij = O(n�), for all 1 � i � k. Given a �-splitter S, we will refer to

G(S) = fG1; : : : ; Gkg as a �-splitting of G.

A vertex v 2 V is de�ned to be at the border of a �-splitter S if and only

if v is a vertex of an edge e 2 S. A �-splitting G(S) = fG1; : : : ; Gkg is called
normalized, if k = O(n1��).

9

2.4.2 �-Partitionable (Directed) Graphs

Let G = (V;E) be a directed graph with vertex set V , edge set E, and

size n = jV j+ jEj, where the out-degree of any vertex is bounded by some

constant. Let distG(v1; v2) denote the length of a shortest directed path in

G connecting vertices v1 and v2. We de�ne G to be �-partitionable if and

only if G has an �-splitter S, 0 < � < 1, such that G(S) = fG1; : : : ; Gkg
can be partitioned into two sets of graphs, fH1; : : : ; Hk1

g and fT1; : : : ; Tk2g,
such that for every directed edge (v1; v2) 2 S, v1 2 Hi and v2 2 Tj , for some

i; j.

Note that, for example, every balanced k-ary search tree with all edges

either directed towards the leaves or directed towards the root (i.e., all search

queries can only move in one direction, either from the root towards the

leaves, or from the leaves towards the root) is �-partitionable; see Figure 2.

2.4.3 �-�-Partitionable (Undirected) Graphs

Let G = (V;E) be an undirected graph with vertex set V , edge set E, and

size n = jV j + jEj, where the degree of any vertex is bounded by some

constant. For two vertices v1; v2 2 V , let distG(v1; v2) denote the length of

a shortest (undirected) path in G connecting v1 and v2.

Let S1 and S2 be an �-splitter and a �-splitter, respectively, of G. We

de�ne S1 and S2 to have distance k if and only if k = minfdistG(v1; v2) : v1
is at the border of S1 and v2 is at the border of S2g.

G is called �-�-partitionable if and only if G has an �-splitter S1 and a

�-splitter S2, such that S1 and S2 have distance
(logn).

Note that, for example, every undirected balanced k-ary search tree

(i.e., search queries can move within the tree in arbitrary direction) is �-�-

partitionable; see Figure 3.

3 Mesh Solutions to the Multisearch Problem

In this section, we present mesh solutions to the multisearch problem for

hierarchical DAGs, �-partitionable graphs, and �-�-partitionable graphs.

First, we de�ne some notation that will be used throughout this section.

De�ne G = (V;E) to be a graph with vertex set V , edge set E, and size

n = jV j + jEj. In each subsection, we will specify whether the graph is

directed or undirected. For directed graphs, we assume that the out-degree

of every vertex is bounded by some constant, and for undirected graphs,

10

we assume that the degree of every vertex is bounded by some constant.

Finally, we de�ne Q = fq1; :::; qmg to be a set of m = O(n) search queries.

We now discuss the manner in which G and Q will be represented on the

mesh. Every processor will initially store

� one arbitrary vertex v 2 V ,

� the addresses of all processors storing a vertex w 2 V , such that

(v; w) 2 E (recall that G has out-degree �(1)), and

� one arbitrary query q 2 Q.

During an algorithm, no processor will store information associated with

more than �(1) items of V nor more than �(1) items of Q. Notice that

the assignment of vertices and queries to processors may change during the

course of the algorithms. In addition, we assume that every processor p has

a register visit(p), where at any stage of a multisearch algorithm, a query

q 2 Q will be said to visit a node v 2 V if processor p is responsible for

query q and stores a copy of v in visit(p).

3.1 The Multisearch Problem for Hierarchical DAGs

Let G = (V;E) be a hierarchical DAG of size n and height h. Let L0; : : : ; Lh
be the levels of G. Recall that this implies G has out-degree �(1), h =

O(logn), and jLij = �i, for some � > 1.

Consider a set Q = fq1; :::; qng of n search queries. Due to the structure

of the hierarchical DAG, a search path for a query q has length r � h + 1

and consists of r vertices in consecutive levels Li; : : : ; Li+r�1, for some i 2
f0; : : : ; h� r+ 1g. We will henceforth assume, w.l.o.g., that each query has

a search path of length h+ 1.

In this section we show how to solve the multisearch problem for G

and Q on a mesh-connected computer of size n in time �(
p
n). The initial

con�guration of the machine is as given at the beginning of Section 3. In

addition, we assume that every processor storing a node v also stores the

level index of v in G. Note that the level indices can be easily computed in

time �(
p
n) by successively identifying the vertices in each level Li, starting

with level Lh, and compressing after each step the remaining levels into a

subsquare of processors.

For i � 1, we will use log(i) to denote the function obtained by applying

the log function i times, i.e., log(1) x = logx and log(i) x = log log(i�1) x.
For convenience, we de�ne log(0) x = x

2 . Note that there exists a constant

11

c such that �y � y2 for any y � c. For any x � �c, we de�ne log�
�
x =

maxfij log(i)� x � cg. Hence, log(i)� x � (log(i+1)� x)2 for 0 � i � log�� x � 1.

For the remainder of this section, all logarithms are taken to be the base �.

Let Bi = (Vi; Ei), 0 � i � log� h � 1, be the subgraph of G induced

by the vertices of G between levels h � 2 log(i) h and h � 1 � 2 log(i+1) h,

inclusive. We will use jBij, hi = h � 1 � 2 log(i+1) h, and �hi, to refer

to the size of Bi, the highest index of a level in Bi, and the number of

levels in Bi, respectively. See Figure 4 for an illustration. Notice that

jBij = �(�h�2 log
(i+1)

h) = �(n

(log(i) h)2
) and �hi = �(log(i) h).

Let B� be the subgraph induced by the vertices between levels h �
2 log(log

�
h�1) h and h, inclusive. Notice that B� consists of �(1) levels.

The general strategy for solving the multisearch problem on G is to solve

the multisearch problem for B0, then for B1, and so on, until we solve the

problem for Blog� h�1, and �nally for B�. That is, we �rst consider those

queries which originate in B0, and process them until they either terminate

or wish to leave B0. Next, we process those queries that wanted to leave

B0 (for B1), as well as those queries which originate in B1, and process

them until either they terminate or wish to leave B1 (for B2). This process

continues until all queries terminate that need to be processed by B�.
Since B� has �(1) levels, the multisearch problem for B� can be easily

solved in time O(
p
n). What remains to be shown is how to solve the

multisearch problems for B0; : : : ; Blog� h�1 in total time O(
p
n).

Consider the partitioning of the entire mesh-connected computer into

log(i) h� log(i) h submeshes of
p
n

log(i) h
�

p
n

log(i) h
processors. Such a partition-

ing will be called a Bi-partitioning, and each submesh will be called a Bi-

submesh. Notice that each Bi-submesh can store a copy of the subgraph Bi.

Further, notice that every Bi+1-submesh, �, contains several Bi-submeshes.

We will refer to the top-left Bi-submesh as the top-left Bi-submesh of �.

Lemma 1 Consider a Bi-partitioning of the mesh-connected computer, 0 �
i � log� h� 1, and assume that every Bi-submesh stores a copy of Bi. Then

the multisearch problem for Bi can be solved in time O(
p
jBij log�hi) =

O(
p
jBij log(i+1) h).

Proof: Let B1
i
be the subgraph of G induced by the vertices of G between

levels hi��hi and hi� 1� 2 log�hi, inclusive, and let B2
i
be the subgraph

induced by the vertices between levels hi � 2 log�hi and hi, inclusive. See

Figure 5 for an illustration. Notice that jB1
i
j = O(�hi�2 log�hi) = O(

jBij
(�hi)2

).

12

On every Bi-submesh in parallel, we will solve the multisearch problem for

Bi for those queries stored in that submesh. We next describe our solution

for one Bi-submesh. The solution consists of two phases. In Phase 1, every

query visits the vertices on its search path that lie in B1
i
; in Phase 2 the

queries will visit the vertices on their search path that lie in B2
i
. For Phase 1,

the Bi-submesh is partitioned into �hi��hi submeshes of size
jBij

(�hi)2
, called

B1
i
-submeshes. Notice that every B1

i
-submesh can store a copy of B1

i
. In

timeO(
p
jBij), we can identify B1

i
fromBi and duplicate B

1
i
such that every

B1
i
-submesh contains a copy of B1

i
. Each B1

i
-submesh then (independently

and in parallel) solves the multisearch problem forB1
i
for those queries stored

in that submesh. This can be easily done in O(
p
jBij) time since jB1

i
j =

O(
jBij

(�hi)2
) and B1

i
consists of O(�hi) levels. For Phase 2, the search process

is advanced level by level. Since B2
i
consists of O(log�hi) levels, Phase 2

can be executed in O(
p
jBij log�hi) time. Thus, the time complexity of the

above process is O(
p
jBij log�hi). 2

Obviously, if everyBi-submesh stores a copy ofBi then we need O(log
� n)

memory per processor. Our strategy will be to distribute the subgraphs Bi

over the mesh in such a way that, when the multisearch problem for Bi

needs to be solved, all of the required copies of Bi can be created in time

O(
p
jBi+1j). From this, we obtain a O(

p
n) time solution to the multisearch

problem for G.

To simplify the presentation, we assume log(i) h is divisible by log(i+1) h,

for 0 � i � log� h � 1. Our algorithm can easily be modi�ed to handle the

general case. Let Blog� h-submesh denote the entire mesh.

Algorithm 1: An algorithm for solving the multisearch problem for a hi-

erarchical DAG G.

1. A register label(p) is allocated at every processor p, and the following

is executed for i = log� h � 1; : : : ; 0:

� In each Bi+1-submesh, �, every processor p in the top-left Bi-

submesh of � sets label(p) := i.

Notice that the label of a processor may be overwritten by smaller

indices in later iterations.

2. For i = log� h � 1; : : : ; 0, on each Bi+1-submesh the following is exe-

cuted independently and in parallel:

13

(a) The subgraph Bi is identi�ed and its data is distributed evenly

among the processors with label = i.

(b) (
log(i) h

log(i+1)
h
)2 copies of the union of B0; : : : ; Bi�1 are created and

one copy is moved to each Bi-submesh.

Note that, after this step, each B(i+1)-submesh stores a copy of Bi

using the processors with label = i.

3. For i = 0; : : : ; log� h � 1, on each Bi+1-submesh the following is exe-

cuted independently and in parallel:

(a) Bi is duplicated such that each Bi-submesh stores a copy of Bi.

(b) For each Bi-submesh, the multisearch problem forBi with respect

to those queries stored in that submesh is solved as indicated by

Lemma 1.

4. Finally, the multisearch problem for B� is solved.

Theorem 2 Let G be a hierarchical DAG of size n and let Q = fq1; :::; qmg
be a set of m = O(n) search queries. Then the multisearch problem for Q

on G can be solved on a mesh of size n (with �(1) memory per processor)

in �(
p
n) time.

Proof: We �rst study the correctness of Algorithm 1, and then give some

implementation details and prove the claimed time complexity and space

requirement. In Steps 1 and 2, each Bi, for 0 � i � log� h� 1, is duplicated

such that every Bi+1-submesh contains one copy of Bi. In Step 3, the

multisearch problem is solved sequentially for B0; B1; : : : ; Blog� h�1. Notice
that within every Bi+1-submesh, 0 � i � log� h� 1, the graph Bi is copied

into every Bi-submesh, such that Lemma 1 can be applied to solve the

multisearch problem for Bi. Finally, in Step 4, the multisearch problem for

B� is solved. Thus, the multisearch problem for G is solved.

Next, we analyze the space complexity of Algorithm 1, showing that

only �(1) space is required per processor. This is obvious for Steps 1, 3

and 4; a potential problem lies in the duplication scheme in Step 2. For

Step 2(b) we observe that
P

i�1
j=0 jBj j = O(jBij) and, hence, it requires only

�(1) storage per processor. For Step 2(a), we need to show that in each

Bi-submesh there are
(jBij) processors with label = i. Note that for

j � i � 1, each Bj+1-submesh contains one Bj -submesh in its top-left cor-

ner whose processors' labels are set to j (see Step 1). That is, in Step 1,

14

the labels of at most n

(log(i) h)2
(log

(j+1)
h

log(j) h
)2 processors are changed from i to

j. Hence, the number of processors in each Bi-submesh with label = i is

(n

(log(i) h)2
(1�

P
i�1
j=0(

log(j+1)
h

log(j) h
)2)) =
(n

(log(i) h)2
). Since jBij = O(n

(log(i) h)2
),

these processors can store Bi with �(1) storage per processor provided that

the Bi's data can be evenly distributed among them. This can be achieved in

O(
p
n) time, using a combination of the standard mesh operations. Summa-

rizing, we have shown that Algorithm 1 requires �(1) storage per processor.

Next, we prove the time complexity of Algorithm 1. Since
Plog� h�1

i=0

p
jBij =

O(
p
n) and O(

Plog� h�1
i=0

p
jBi+1j) = O(

p
n), the time complexity of Steps 1

and 2 is �(
p
n). Since B� consists of �(1) levels, the �(

p
n) time complexity

of Step 4 is obvious. Since each Bi+1-submesh contains one copy of Bi, the

total time complexity for Step 3a (over all iterations) isO(
Plog� h�1

i=0

p
jBi+1j) =

O(
p
n). From Lemma 1 it follows that for each i = 0; : : : ; log� h�1, the time

complexity of Step 3b is O(
p
jBij log�hi). Thus, the total time for all itera-

tions of Step 3b is O(
Plog� h�1

i=0

p
jBij log�hi) = O(

Plog� h�1
i=0

p
n log(i+1)

h

log(i) h
) =

O(
p
n). Hence, the time complexity of Algorithm 1 is �(

p
n). 2

3.2 The Multisearch Problem For Partitionable Graphs

In this section, we present mesh solutions to the multisearch problem for

�-partitionable graphs and �-�-partitionable graphs. We will �rst intro-

duce a tool referred to as constrained multisearch, which will be utilized in

Sections 3.2.2 and 3.2.3.

3.2.1 Constrained Multisearch

Let G = (V;E) be a directed or undirected graph. Consider a set 	 =

fG1; :::; Gkg of k edge and vertex disjoint subgraphs of G such that jGij =
O(n�) and k = O(n1��), for some 0 < � < 1. It is important to note that

we do not assume that the union of the subgraphs in 	 contains all vertices

of G.

Consider any stage of the multisearch for Q on G, and let v(q) 2 path(q)
denote the node currently visited by query q 2 Q.

The constrained multisearch problem with respect to 	 consists of ad-

vancing, for every Gi 2 	, every search query q with v(q) 2 Gi by log2 n

steps in its search path, unless the next node to be visited by q is not in Gi.

Notice that the queries may be advanced by a nonuniform number of steps.

15

The remainder of this section focuses on procedure Constrained-Multisearch(,

�), which solves the constrained multisearch problem on a mesh of size n in

�(
p
n) time.

For every Gi = (Vi; Ei) 2 	, we de�ne

��	(Gi) =

�
jfq 2 Q : v(q) 2 Vigj

n�

�
:

Property 1

X
Gi2	

��	(Gi) = O(n1��)

.

Proof: A trivial consequence of the fact that jQj = m = O(n). 2

We now present our mesh algorithm for solving the constrained multi-

search problem with respect to 	.

Procedure Constrained-Multisearch(, �): Implementation of con-

strained multisearch with respect to 	.

Initial con�guration: A stage of the multisearch for Q on G, where every

q 2 Q currently visits node v(q) 2 path(q). Furthermore, every processor

storing a vertex v 2 V , also stores an index indicating to which Gi 2 	 the

vertex v belongs, if any.

Implementation:

1. All queries q 2 Q, such that v(q) is in some subgraph Gi 2 	, are

marked active; all other queries are marked inactive. (Queries whose

search paths have already terminated are also marked inactive.)

2. For every Gi 2 	, the value of ��	(Gi) is computed.

3. If X
Gi2	

��	(Gi) = 0

then EXIT.

4. For each Gi 2 	, ��	(Gi) copies of Gi are created. Each copy is placed

in a
p
n��

p
n� size subsquare of the mesh-connected computer. That

is, a submesh of size
p
n� �

p
n� .

16

5. Every active query q 2 Q, with v(q) 2 Gi, is moved to one of the

submeshes storing a copy of Gi. This movement is coordinated so

that each submesh containing a copy of Gi will receive O(n
�) queries.

6. Within every submesh storing a subgraph Gi 2 	, the following is

executed log2 n times.

(a) For every active query q 2 Q, the next node in its search path is

determined (by applying the successor function f).

(b) Every active query for which the next node in its search path

is not in Gi, is marked inactive. (A query whose search path

terminates is also marked inactive.)

(c) Every active query visits the next node in its search path.

7. Discard the copies of the subgraphs Gi 2 	 created in Step 4.

Lemma 3 The constrained multisearch problem with respect to 	 can be

solved on a mesh of size n in �(
p
n) time.

Proof: We �rst study the correctness of Constrained-Multisearch(,

�), then give some implementation details, and �nally prove the time com-

plexity. Obviously, every query q either

� visits the next log2 n nodes in its search path,

� visits the next N nodes in its search path, where N < log2 n, until the

next node to be visited is no longer in the same subgraph Gi 2 	 that

contains v(q), or

� does not advance any steps in its search path, for the case where v(q)

is not in any Gi 2 	.

The crucial step for proving the correctness of the procedure is to show that

(1) the total size of the copies of subgraphs Gi created in Step 4 is O(n),

and (2) in Step 5, the sizes and total number of queries to be moved match

the sizes and total number of submeshes available. Item (1) follows from

Property 1, and Item (2) follows from the de�nition of ��	(Gi) and the fact

that each submesh is of size O(n�).

We will now prove the claimed time complexity. Steps 1, 2, 3, and 7

can be easily implemented in time O(
p
n) by applying a constant number

of standard mesh operations. For Step 4, the mesh is subdivided into a

17

grid of
p
n1�� �

p
n1�� submeshes, each of size n�. The total number of

copies created of every subgraph Gi is O(n
1��) (Property 1). Hence, every

submesh needs to simulate only a constant number of \virtual" submeshes,

where each \virtual" submesh stores just one copy of some subgraph Gi 2 .
Creating the required copies of subgraphs and moving them to the \virtual"

submeshes can be implemented by a constant number of standard mesh

operations. Step 5 is implemented analogously. Finally, we discuss the

time complexity of Step 6. Notice that each execution of the loop body

is executed independently and in parallel on every submesh of size O(n�)

created in Step 4. Therefore, by using standard random access read and

write operations within every submesh, each iteration of the loop can be

implemented in O(
p
n�) time, which implies a total of O(logn

p
n�) time for

Step 6 (since there are log2 n iterations). Since 0 < � < 1, the total time

complexity of Step 6 is O(logn
p
n�) = O(

p
n). 2

3.2.2 The Multisearch Problem for Directed �-Partitionable Graphs

Let G = (V;E) be a directed �-partionable graph. Let Q = fq1; :::; qmg be
a set of m = O(n) search queries, and let r denote the length of the longest

search path associated with a query q 2 Q. In this section, we present an

algorithm to solve the multisearch problem for Q on G in O(
p
n + r

p
n

logn)

time. Our strategy is to give an algorithm which executes one log-phase

of multisearch in (
p
n) time. The entire multisearch algorithm consists of

iterating the log-phase algorithm O(d r

logn
e) times.

Let G(S) = fH1; : : : ; Hk1
; T1; : : : ; Tk2g be an �-splitting of G such that

for every edge (v1; v2) 2 S (directed from v1 to v2), v1 2 Hi and v2 2 Tj ,

for some 1 � i � k1; 1 � j � k2. Recall that this implies 0 < � < 1,

jHij = O(n�), and jTij = O(n�).

We assume that the �-splitter S is known a priori. That is, initially the

processor that stores vertex v 2 V also stores an index indicating the graph

in G(S) to which v belongs. We can also assume, without loss of generality,

thatG(S) is normalized. That is, we can assume that k = k1+k2 = O(n1��);
see Section 2.4.1. Otherwise, we group the subgraphs Hi (Ti) such that each

resulting subgraph has size �(n�). This operation is easily performed on a

mesh of size n in O(
p
n) time. Furthermore, the algorithm described in this

section does not require that every subgraph in G(S) consist of only one

connected component of the graph (V;E� S).

Before presenting our mesh algorithm for one log-phase of the multi-

search problem for Q on G, we observe some properties of �-partionable

18

graphs.

Property 2 Let G(S) = fH1; : : : ; Hk1
; T1; : : : ; Tk2g be an �-splitting of G.

Then the following hold.

� A query q that has a node of a subgraph Hi in its search path does not

visit any node of another subgraph Hj ; i 6= j.

� Once a query q has visited a node in a subgraph Ti, all subsequent

nodes visited by q will be in the same subgraph Ti.

Proof: The proof follows from the fact that edges of an �-partitionable

graph are either directed from some Hi to some Tj , or have both endpoints

in the same subgraph Hi or Ti. 2

Algorithm 2: Implementation of one log-phase of multisearch on a directed

�-partionable graph.

1. If this is the �rst log-phase, then every query q 2 Q visits the �rst

node in its search path; otherwise, every q 2 Q visits the next node in

its search path.

2. Constrained-Multisearch (fH1; : : : ; Hk1
; T1; : : : ; Tk2g, �).

3. Every q 2 Q visits the next node in its search path.

4. Constrained-Multisearch (fH1; : : : ; Hk1
; T1; : : : ; Tk2g, �).

Lemma 4 One log-phase of multisearch on a directed �-partionable graph

of size n can be performed in �(
p
n) time on a mesh of size n.

Proof: We �rst consider the correctness of Algorithm 2. The algorithm

is based on the following. Initially, every query starts at the �rst node

in its search path, which is in some Hi, 1 � i � k1, or Tj , 1 � j �
k2. Using Constrained-Multisearch, every query is advanced until it visits

either its log2 n successors, or needs to visit a node that is not in its initial

subgraph, at which point it stops. Next, every query is advanced one node

and then Constrained-Multisearch is performed again. So, by 2 applications

of Constrained-Multisearch, every query will be advanced at least log2 n

nodes. (Note, if there are fewer than log2 n nodes in a given search path,

then that query will terminate at the appropriate time.) Property 2, it

follows that for every query q 2 Q, one of the following cases must apply:

19

1. All nodes visited by q within the log-phase are in one subgraph Hi.

2. All nodes visited by q within the log-phase are in one subgraph Ti.

3. Within the log-phase, query q �rst visits only nodes within one sub-

graph Hi, and once it \leaves" Hi it will only visit nodes in one sub-

graph Tj .

For those queries to which either Case 1 or Case 2 applies, all nodes vis-

ited on the search path during the log-phase are visited during Steps 1

and 2; see Lemma 3. Let q be a query to which Case 3 applies, and let

(v1; : : : ; vx; vx+1; : : : ; vy) be the sequence of nodes to be visited within the

log-phase, where v1; : : : ; vx are in some subgraph Hi, and vx+1; : : : ; vy are

in some subgraph Tj . It follows from Lemma 3 that v1; : : : ; vx are visited

during Steps 1 and 2, and that vx+1; : : : ; vy are visited during Steps 3 and

4.

From Lemma 3 it also follows that Algorithm 2 has time complexity

�(
p
n) and requires only �(1) memory per processor. 2

Therefore, by iterating Algorithm 2 O(d r

logn
e) times, the multisearch

problem can be solved for �-partitionable graphs.

Theorem 5 Let G be a directed �-partionable graph of size n, and let Q =

fq1; :::; qmg be a set of m = O(n) search queries. Then the multisearch

problem for Q on G can be solved in O(
p
n+ r

p
n

logn
) time on a mesh of size

n, where r is the length of the longest search path associated with a query

q 2 Q. 2

3.2.3 The Multisearch Problem for Undirected �-�-Partitionable

Graphs

Let G = (V;E) be an (undirected) �-�-partionable graph. Let Q = fq1; :::; qmg
be the set of m = O(n) search queries, and let r denote the length of the

longest search path associated with a query q 2 Q. In this section, we present
an algorithm to solve the multisearch problem for Q on G in O(

p
n+ r

p
n

logn
)

time. As in Section 3.2.2, we will again give an algorithm to execute one log-

phase of the multisearch problem in �(
p
n) time. The multisearch algorithm

will consist of iterating this log-phase algorithm O(d r

logne) times.

Let S1 and S2 be an �-splitter and a �-splitter, respectively, of G such

that S1 and S2 have distance
(logn). We assume that S1 and S2 are

known a priori. That is, initially the processor that stores vertex v 2 V also

20

stores an index indicating the graph G(S1) to which v belongs, and an index

indicating the graph G(S2) to which v belongs..

With the same argument as in Section 3.2.2, we also assume that G(S1)

and G(S2) are normalized. Let G(S1) = fW 1
1 ; : : : ;W

1
k1
g and G(S2) =

fW 2
1 ; : : : ;W

2
k2
g. Recall that 0 < � < 1, 0 < � < 1, jW 1

i
j = O(n�),

jW 2
i
j = O(n�), k1 = O(n1��), and k2 = O(n1��).
We �rst state a property of �-�-partionable graphs that will be used in

the algorithm.

Property 3 Let S1 and S2 be an �-splitter and �-splitter, respectively, of

G, such that S1 and S2 have distance
(logn). Then, if at any stage of

the multisearch, a query q 2 Q visits a node v at the border of S1, it can

advance
(logn) more steps in its search path without visiting a node v0 at
the border of S2.

Proof: The proof follows immediately from the de�nition of �-�-partitionable

graphs. 2

Algorithm 3: Implementation of one log-phase of multisearch on an �-�-

partionable graph.

1. If this is the �rst log-phase, then every query q 2 Q visits the �rst

node in its search path; otherwise, every q 2 Q visits the next node in

its search path.

2. Constrained-Multisearch (fW 1
1 ; : : : ;W

1
k1
g, �).

3. Every q 2 Q visits the next node in its search path.

4. Constrained-Multisearch (fW 2
1 ; : : : ;W

2
k2
g, �).

Lemma 6 One log-phase of multisearch on an (undirected) �-�-partionable

graph of size n can be performed in �(
p
n) time on a mesh of size n.

Proof: We �rst consider the correctness of Algorithm 3. The algorithm

is based on the following. Initially, every query starts at the �rst node in

its search path. Using Constrained-Multisearch on G(S1), every query is

advanced until it visits either its log2 n successors, or needs to visit a node

that is not in its initial subgraph, at which point it stops. Next, every

query is advanced one node and then Constrained-Multisearch is performed

again, but this time with respect to G(S2). Notice that by performing the

21

second application of Constrained-Multisearch with respect to G(S2), every

query that had reached a border of G(S2) will be able to advance
(logn)

more steps in its search path without visiting another node at the border of

S2; by this time, the log-phase is completed. Therefore, by 2 applications

of Constrained-Multisearch, every query will be advanced at least log2 n

nodes. (Note, if there are fewer than log2 n nodes in a given search path,

then that query will terminate at the appropriate time.) That is, for every

query q 2 Q, one of the following cases applies:

1. All nodes visited by q within the log-phase are in one subgraph W 1
i
.

2. All nodes visited by q within the log-phase are in one subgraph W 2
i
.

3. Within the log-phase, query q �rst visits some nodes in one subgraph

W 1
i
of G(S1). Once it \leaves" W

1
i
, it is su�cient (for the completion

of a log-phase) to consider only the subgraph W 2
j
of G(S2) visited at

that point in time, and let the query continue on its search path until

it reaches a vertex at the border of S2.

The correctness of Algorithm 3, as well as the time and space complexity,

follow immediately from Lemma 3. 2

Therefore, by iterating Algorithm 3 O(d r

logne) times, the multisearch

problem can be solved for �-�-partionable graphs.

Theorem 7 Let G be an (undirected) �-�-partitionable graph of size n,

and let Q = fq1; :::; qmg be a set of m = O(n) search queries. Then the

multisearch problem for Q on G can be solved in O(
p
n + r

p
n

logn) time on a

mesh of size n, where r is the length of the longest search path associated

with a query. 2

4 Implementing Parallel Data Structures on aMesh-

Connected Computer

In this section, we illustrate the use of the multisearch techniques presented

in Section 3. The multisearch technique for partitionable graphs, described

in Section 3.2, can be immediately applied to parallelize standard query

processes on balanced search trees. When processing many such queries

independently and in parallel, the query paths may overlap arbitrarily. Of

particular interest are online processes where the paths taken by the queries

22

can not be computed a priori. Such cases occur, for example, when no global

order exists for the set of queries and data.

We give two simple illustrations of possible applications. Consider a set

S of n non intersecting line segments spanning a vertical slab. Each query

consists of a point within the slab, for which the two segments determining

the region containing that point must be computed. The obvious sequential

solution is to build a balanced binary tree for the line segments and answer

queries by a straight forward tree search. Using our multisearch technique,

a set Q of n such queries can be processed in time O(
p
n) on a mesh of size

n. Note that, there exists no total ordering on the set Q [S.
Now, consider the problem of determining the \best" common ancestor

of a pair of nodes in a tree. Such a problem occurs, e.g., in clustering

[17]: given a hierarchical agglomerative clustering scheme, determine for

two data elements the \best" cluster (e.g., the cluster with closest cluster

center) containing both elements. The obvious sequential solution to the

general \best" common ancestor problem, in a tree of size n, is to visit the

path of all common ancestors in the tree while maintaining the current best

element. Using our multisearch technique, a set of n such queries can be

processed in time O(
p
n) on a mesh of size n.

The multisearch techniques for multiple online overlapping queries on

partitionable graphs also supports cases where queries may change directions

independently. For example, in a tree, queries may move both upwards and

downwards during the search. Possible applications include cases where each

query performs an inorder traversal of a certain subtree [7].

An interesting application of multisearch techniques for hierarchical DAGs

(Section 3.1) are mesh implementations of Kirpatrick's subdivision hierar-

chies. In [6], O(logn log� n) time deterministic and O(logn) time random-

ized PRAM algorithms are presented for constructing two well known data

structures, namely, the subdivision hierarchy for a planar graph (with n

nodes) and the hierarchical representation for a convex polyhedron (with

n vertices). Both are hierarchical DAGs of size O(n) with triangles and

triangular faces, respectively, associated with their vertices. As stated in

[6], once these hierarchies are given, the following problems can be solved in

time O(logn) on the PRAM.

� Multiple planar point location: Given a planar graph G of size n,

and n points in the plane, determine for each point p the face of G

containing p.

� Multiple line-polyhedron queries: Given a 3-d convex polyhedron

23

P of size n, and n lines in 3-space, determine for each line l whether it

intersects P and, if not, determine the two planes through l that are

tangent to P .

� 3-d convex polyhedron separation: Given two convex 3-d polyhe-

dra P and Q, each of size n, determine whether or not there exists a

plane which separates P and Q.

� Merging 3-d convex hulls: Given two separated convex 3-d poly-

hedra P and Q, construct the convex hull of the union of P and Q.

The �rst two problems can be solved in O(logn) time for a single query

on a sequential machine [19, 10]. Therefore, for the CREW PRAM, both

problems can be solved in O(logn) time by assigning one processor to each

query and performing the sequential algorithm concurrently for all proces-

sors. The third problem can be reduced to a linear number of independent

line-polyhedron queries [6, 11]. The major step in solving the fourth prob-

lem consists of determining for each vertex/edge/face of P and Q, whether

it is a vertex/edge/face, respectively, of the convex hull of the union of P

and Q. With this information, the hulls can be merged by a �xed number

of parallel pre�x operations. As presented �rst in [1], with corrected ver-

sions in [9] and [3], each edge of P can locally determine whether or not it

is in the convex hull based on the result of its line-polyhedron query with

respect to Q. Hence, the problem of merging 3-d convex hulls reduces to 2n

line-polyhedron queries.

For the mesh-connected computer, it has been shown in [9] that the

subdivision hierarchy for a planar graph (with n nodes), as well as the

hierarchical representation for a convex polyhedron (with n vertices), can

be constructed in time O(
p
n) using O(n) processors. Using Theorem 2, we

obtain

Theorem 8 The following problems can be solved in time �(
p
n) on a mesh

of size n:

1. Multiple planar point location. 3

2. Multiple line-polyhedron queries.

3A �(
p
n) time mesh algorithm was �rst presented in [18]. The problem is listed here

only to show that, within the multisearch framework, a �(
p
n) time algorithm is now

obvious.

24

3. 3-d convex polyhedron separation.

4. Merging 3-d convex hulls; determining the convex hull of n points in

3-space. 4

2

5 Conclusion

In this paper, we have considered the multisearch problem for O(n) search

queries on a data structure modeled as a graph G with n constant-degree

nodes. We have presented a �(
p
n+ r

p
n

logn
) time algorithm for performing,

in parallel, O(n) searches on a shared data structure stored in a
p
n �

p
n

mesh-connected computer. The main problem for the mesh, in comparison

to other networks like the hypercube, is that in order to obtain optimal

algorithms from multisearch, the time per advancement of all queries by one

step in their search paths must be O(
p
n

logn
). That is, it must be less than

the diameter of the network. The algorithms presented here show how to

overcome this problem.

To illustrate the use of the multisearch techniques, we considered parallel

online traversals of trees and hierarchical representations of polyhedra. The

parallel mesh implementation of the latter one yields optimal mesh algo-

rithms for multiple lines-polyhedron intersection queries, multiple tangent

plane determination, intersecting convex polyhedra, and computation of the

three-dimensional convex hull. We believe that the multisearch problem

is such a fundamental problem that we expect it to have many additional

applications (e.g., in parallel databases and related areas).

Acknowledgement. The authors are grateful to the referees for their help-

ful comments. Useful conversations with Professors Susanne Hambrusch and

Rao Kosaraju are also gratefully acknowledged.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap. Par-

allel computational geometry. Algorithmica, 3(3):293{327, 1988.

4Other optimal mesh solutions have recently been obtained [20, 16] independently of

ours and using very di�erent, purely geometric approaches, rather than the multisearch

method we use.

25

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analy-

sis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts,

1974.

[3] N. Amato and F. P. Preparata. The parallel 3D convex-hull prob-

lem revisited. Technical Report UILU-ENG-90-2251, Coordinated Sci-

ence Laboratory, University of Illinois at Urbana-Champaign, Novem-

ber 1990.

[4] M. J. Atallah and S. Hambrusch. Solving tree problems on a mesh-

connected processor array. Information and Control, 69:168{186, 1986.

[5] B. Chazelle. An optimal algorithm for intersecting three-dimensional

convex polyhedra. In Proceedings of the 30th Annual IEEE Symposium

on Foundations of Computer Science, pages 586{591, 1989.

[6] N. Dadoun and D. G. Kirkpatrick. Parallel construction of subdivi-

sion hierarchies. In Proceedings of the Third Annual Symposium on

Computational Geometry, pages 205{214, 1987.

[7] F. Dehne, A. Ferreira, and A. Rau-Chaplin. A massively parallel

knowledge-base server using a hypercube multiprocessor. In Proc. IEEE

International Conference on Tools for Arti�cial Intelligence, Washing-

ton, D.C., 1990, pp. 660-666.

[8] F. Dehne and A. Rau-Chaplin. Implementing data structures on a

hypercube multiprocessor and applications in parallel computational

geometry. Journal of Parallel and Distributed Computing, 8(4):367-375,

1990.

[9] F. Dehne, J.-R. Sack, and I. Stojmenovic. A note on determining the

3-dimensional convex hull of a set of points on a mesh of processors. In

Scandinavian Workshop on Algorithm Theory, pages 154{162, 1988.

[10] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral inter-

section. In Proceedings of the International Colloquium on Automata,

Languages, and Programming, pages 154{165, 1982.

[11] D. P. Dobkin and D. G. Kirkpatrick. A linear time algorithm for de-

termining the separation of convex polyhedra. Journal of Algorithms,

6:381{392, 1985.

26

[12] H. Edelsbrunner. A new approach to rectangle Interseactions - Part I.

International Journal of Computer Mathematics, 13:209{219, 1983.

[13] H. Edelsbrunner. A new approach to rectangle Interseactions - Part II.

International Journal of Computer Mathematics, 13:221{229, 1983.

[14] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-

Verlag, Berlin, 1987.

[15] X. He and R. Miller. Optimal mesh algorithms for maximal indepen-

dent subset and 5-coloring. Tech. Rep. 90-27, Department of Computer

Science, SUNY-Bu�alo, October, 1990.

[16] J. A. Holey and O. H. Ibarra. Triangulation in a Plane and 3-D convex

hull on Mesh-Connected Arrays and Hypercubes. Tech. Rep., Univ. of

Minnesota, Dept. of Computer Science, 1990.

[17] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice

Hall Advanced Reference series, USA, 1988.

[18] C. S. Jeong and D. T. Lee. Parallel geometric algorithms on a mesh

connected computer. Algorithmica, 5(2):155-178,1990.

[19] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Jour-

nal of Computing, 12(1):28{35, 1983.

[20] D. T. Lee, F. P. Preparata, C.S. Jeong and A. L. Chow. SIMD Parallel

Convex Hull Algorithms, Northwestern Univ. Tech Report AC-91-02,

March 1991.

[21] R. Miller and Q. F. Stout. E�cient parallel convex hull algorithms.

IEEE Transactions on Computers, 37(12):1605{1618, December 1988.

[22] R. Miller and Q. F. Stout. Parallel Algorithms for Regular Architectures.

MIT Press, 1991.

[23] R. Miller and Q. F. Stout. Mesh computer algorithms for computational

geometry. IEEE Transactions on Computers, January 1989.

[24] D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel

computer. IEEE Transactions on Computers, C-27(1):2{7, January

1979.

27

[25] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers. IEEE

Transactions on Computers, C-30(2):101{107, February 1981.

[26] W. Paul, U. Vishkin and H. Wagener. Parallel dictionaries on 2-3

trees. in Proceedings 10th International Colloquium on Automata, Lan-

guages, and Programming (ICALP), LNCS 154, Springer-Vergerlag,

Berlin, 1983, pp. 597-609.

[27] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-

Verlag, Berlin,1985.

[28] H. Samet. The quadtree and related hierarchical data structures. Com-

puting Survey, 16(2):187{260, June 1984.

[29] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel

computer. Communications of the ACM, 20(4):263{271, April 1977.

[30] J. J. Tsay. Techniques for Solving Geometric Problems on Mesh-

Connected Computers. PhD thesis, Dept. of Computer Sci., Purdue

Univ., 1990.

[31] J. J. Tsay. Searching tree structures on a mesh of processors. To appear

in Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992.

28

Figure 1: A Hierarchical DAG with � = 2.

Figure 2: A Directed Balanced Binary Tree And Its �-Splitter (� = 1
2
).

29

Figure 3: A Undirected Balanced Binary Tree With Its �-Splitter S1 (� = 1
2
)

And �-Splitter S1 (� = 1
3
), Such That S1 And S2 Have Distance h

6
=

(logn).

30

Figure 4: Illustration of the De�nition of Subgraphs Bi.

Figure 5: Illustration of the De�nition of Subgraphs B1
i
And B2

i
.

31

