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Abstract: The focus of this chapter is on the design and implementation of a critical 
computer program in structural biology onto two computational and data grids.  The first 
is the Buffalo-based ACDC grid, which uses facilities at SUNY-Buffalo and several 
research institutions in the greater Buffalo area. The second is Grid2003, an 
international grid established late in 2003 primarily for physics and astronomy 
applications.  We present an overview of the ACDC Grid and Grid2003, focusing on the 
implementation of several new tools that we have developed for the integration of 
computational and data grids, lightweight job monitoring, predictive scheduling, and 
opportunities for improved Grid utilization through an elegant backfill facility. A new 
computational framework is developed for the evolutionary determination an efficient 
implementation of an algorithm to determine molecular crystal structures using the 
Shake-and-Bake methodology. Finally, the grid-enabled data mining approach that we 
introduce is able to exploit computational cycles that would otherwise go unused. 
 
Introduction. The Grid is a rapidly emerging and expanding technology that allows 
geographically distributed and independently operated resources (CPU cycles, data 
storage, sensors, visualization devices, and a wide variety of Internet-ready instruments) 
to be linked together in a transparent fashion [1-3].  The power of the Grid lies not only 
in the aggregate computing power, data storage, and network bandwidth that can readily 
be brought to bear on a particular problem, but on its ease of use.   
 
Grids are now a viable solution to certain computationally- and data- intensive computing 
problems for reasons that include the following. 

1. The Internet is reasonably mature and able to serve as fundamental 
infrastructure for network-based computing.   

2. Network bandwidth, which is doubling approximately every 12 months, has 
increased to the point of being able to provide efficient and reliable services.   

3. Motivated by the fact that digital data is doubling approximately every 9 
months, storage capacity has now reached commodity levels, where one can 
purchase a terabyte of disk for roughly the same price as a high-end PC.   

4. Many instruments are Internet-aware.   
5. Clusters, supercomputers, storage and visualization devices are becoming 

more mainstream.   
6. Major applications, including critical scientific community codes, have been 

parallelized in order to increase their performance (faster turnaround time) and 
capabilities (handle larger data sets or provide finer resolution models).   
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7. Driven by the fact that science is a collaborative activity, often involving 
groups that are not co- located, collaborative environments (i.e., 
collaboratories) are moving out of the alpha phase of development and into at 
least beta testing. 

 
For these and other reasons, grids are starting to move out of the research laboratory and 
into early-adopter production systems.  The focus of grid deployment continues to be on 
the difficult issue of developing high quality middleware. 
 
Grids have recently moved from academic settings to corporate thrusts.  Numerous grid 
projects have been initiated (GriPhyN, PPDG, EU DataGrid, NASA’s Information Power 
Grid, TeraGrid, Open Science Grid, and iVDGL, to name a few).  However, the 
construction of a real general-purpose grid is in its infancy since a true grid requires 
coordinated resource sharing and problem solving in a dynamic, multi- institutional 
scenario using standard, open, general-purpose protocols and interfaces that deliver a 
high quality of service. 
 
Many types of computational tasks are naturally suited to grid environments, including 
data-intensive applications.  Grid-based research and development activities have 
generally focused on applications where data is stored in files.  However, in many 
scientific and commercial domains, database management systems play a central role in 
data storage, access, organization, and authorization for numerous applications.  Part of 
our research effort is targeted at enabling systems that are more accessible within a grid 
framework. 
 
As Grid computing initiatives move forward, issues of interoperability, security, 
performance, management, and privacy need to be carefully considered.  In fact, security 
is concerned with various issues relating to authentication in order to insure application 
and data integrity. Grid initiatives are also generating best practice scheduling and 
resource management documents, protocols, and API specifications to enable 
interoperability. Several layers of security, data encryption, and certificate authorities 
already exist in grid-enabling toolkits such as Globus Toolkit 3 [4]. 
 
Molecular Structure Determination. SnB [5-7] is a computer program based on the 
Shake-and-Bake [8-9] method of molecular structure determination from X-ray 
diffraction data.  It is the program of choice for solving such structures in many of the 
hundreds of laboratories that have acquired it.  This computationally intensive procedure 
is ideally suited to an implementation on a computational and data grid.  Such an 
implementation of SnB allows for the processing of a large number of related molecular 
trial structures [10]. 

 
The Shake-and-Bake algorithm for molecular structure determination was listed on the 
IEEE poster “Top Algorithms of the 20th Century.”  The SnB program uses a dual-space 
direct-methods procedure for determining crystal structures from X-ray diffraction data. 
This program has been used in a routine fashion to solve difficult atomic resolution 
structures, containing as many as 1000 unique non-Hydrogen atoms, which could not be 
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solved by traditional reciprocal-space routines. Recently, the focus of the Shake-and-
Bake research team has been on the application of SnB to solve heavy-atom and 
anomalous-scattering substructures of much larger proteins, provided that 3-4Å 
diffraction data can be measured.  In fact, while direct methods had been applied 
successfully to substructures containing on the order of a dozen selenium sites, SnB has 
been used to determine as many as 180 selenium sites.  Such solutions have led to the 
determination of complete structures containing hundreds of thousands of atoms.   

 
The Shake-and-Bake procedure consists of generating structure invariants and  
coordinates for random-atom trial structures.  Each such trial structure is subjected to a 
cyclical automated procedure that includes computing a Fourier Transform to determine 
phase values from the proposed set of atoms (initially random), determining a figure-of-
merit [11] associated with these phases, refining the phases to locally optimize the figure-
of-merit, computing a Fourier Transform to produce an electron density map, and 
employing a peak-picking routine to examine the map and find the maxima.  These peaks 
(maxima) are then considered to be atoms, and the cyclical process is repeated for a 
predetermined (by the user) number of cycles.   
 
The running time of SnB varies widely as a function of the size of the structure, the 
quality of the data, the space group, and choices of critical input parameters, including 
the size of the Fourier grid, the number of reflections, the number and type of invariants, 
and the number of cycles of the procedure used per trial structure, to name a few.  
Therefore, the running time of the procedure can range from seconds or minutes on a PC 
to weeks or months on a supercomputer.  Trial structures are continually and 
simultaneously processed, with the final figure-of-merit values of all structures stored in 
a file. The user can review a dynamic histogram during the processing of the trials in 
order to determine whether or not a solution is likely present in the set of completed trial 
structures.   
 
SnB has recently been augmented with a data repository that stores information for every 
application of SnB, regardless of where the job is run.  The information is sent to the 
repository directly from SnB in a transparent fashion.  This information is then mined in 
an automated fashion in order to optimize 17 key SnB parameters in an effort to optimize 
the procedure for solving previously unknown structures, as discussed later in this 
chapter. 
 
SnB has also been augmented with a 3D geographically distributed visualization tool so 
that investigators at geographically distributed locations can collaborate in an interactive 
fashion on a proposed molecular solution.  Further, the tool is being generalized to handle 
standard formats.  
 
Grid Computing in Buffalo. The Advanced Computational Data Center Grid (ACDC-
Grid) [10,12-14], which spans organizations throughout Western New York, is a 
heterogeneous grid initially designed to support SnB.  ACDC-Grid is part of Grid3+, the 
IBM NE BioGrid, and serves as the cornerstone for our proposed WNY-Grid.  ACDC-
Grid incorporates an integrated computational and data grid, lightweight job monitoring, 
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predictive scheduling, and opportunities for improved Grid utilization through an elegant 
backfill facility.  The following projects and packages deliver unique and complementary 
components that allow for the systematic expansion of the ACDC-Grid. 

• Globus Toolkit 3 [15] provides APIs and tools using the Java SDK to simplify 
the development of OGSI-compliant services and clients. It supplies database 
services and MDS index services implemented in Java, GRAM [16] service 
implemented in C with a Java wrapper, GridFTP [17] services implemented in C, 
and a full set of Globus Toolkit 2 components based on version 2.4. The Globus 
Toolkit 3 Java provides C bindings for application development and integration 
with the existing grid application base. The recently proposed Web Service-
Resource Framework (WS-RF) provides the concepts and interfaces developed 
by the OGSI specification exploiting the Web services architecture [18-21]. These 
specifications enable define the conventions for managing state so that 
applications discover, inspect, and interact with stateful resources in standard and 
interoperable ways [22-23]. 

• The Python Globus (pyGlobus) project [24-26] generated a Python object-
oriented interface to the Globus Toolkit versions 2.2.4 and 2.4. This provides 
high- level scripting language access to the entire Globus toolkit with similar 
performance to the underlying Globus Toolkit. Integration with Python offers 
high-performance scientific computing access to Numerical Python [27], 
Scientific Python [28], the netCDF library [29], Message Passing Interface (MPI) 
[30], Bulk Synchronous Parallel programming (BSPlib) [31-32], and the SciPy 
library [33]. The pyGridWare  project [34] provides a migration path for the 
pyGlobus users that need a pure Python implementation for developing automated 
client side tooling to interact with Globus Toolkit 3 implementation of OGSI. 
Whereas, Perl provides several different Web services implementations [35] 
based on SOAP and XML-RPC.  The OGSI standard uses SOAP, where the best 
Perl module for SOAP support is SOAP::Lite [36]. The OGSI::Lite [37] package 
is a container for grid services that facilitates writing services in the Perl scripting 
language. Exporting a Perl class as a grid service can inherit the required standard 
OGSI classes and communicate using the SOAP::Lite package. These packages 
add tremendous flexibility to the ACDC-Grid enterprise grid service development 
effort. 

• Microsoft’s .NET technology for supplying Grid Services [38-39] to the UK e-
Science community is projected to result from a collaboration between Microsoft 
[40] and National e-Science Centre (NeSC) [41]. The project objectives include 
developing an implementation of OGSI using .NET technologies and developing 
a suite of Grid Service demonstrators that can be deployed under this .NET OGSI 
implementation. The University of Virginia Grid Computing Group is developing 
OGSI.NET that provides a container framework for the .NET/Windows grid-
computing world [42]. This project can bridge the gap between OGSI compliant 
frameworks that primarily run on Unix based systems to inter-operability with 
Windows based platforms within the ACDC-Grid. 

• OptimalGrid is middleware released by IBM that aims to simplify the creation 
and management of large-scale connected, parallel grid applications [43]. 
OptimalGrid manages problem partitioning, problem piece deployment, runtime 
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management, dynamic level of parallelism, dynamic load balancing, and system 
fault tolerance and recovery. The SETI@home project [44] and the 
Folding@home protein-folding project [45] are examples of applications, similar 
in granularity to applications discussed herein, that can utilize the OptimalGrid 
infrastructure. These applications work in a simple “scatter/gather” mode and 
have no requirement for communication between the grid nodes participating in 
the computation.  

 
The ACDC-Grid has been developed with critical grid components that allow for the 
deployment of a general-purpose regional enterprise grid residing over generally 
available IP networks.  The Shake-and-Bake method of molecular structure 
determination, as instantiated in SnB, has been used as the prototype application in the 
development of our general-purpose grid.  There are many reasons why SnB was chosen, 
including the fact that it is an important scientific code, it is widely distributed, both 
Shake-and-Bake and SnB were developed in Buffalo by members of the Hauptman-
Woodward Medical Research Institute and the State University of New York at Buffalo, 
and that one of the co-developers of Shake-and-Bake and SnB is a member of the 
leadership team of the ACDC-Grid, which means that we have access to the knowledge 
base associated with SnB as well as all of its internals.   
 
To date, the result of our general-purpose grid effort has been the successful deployment 
of a campus grid involving a variety of independent organizations throughout SUNY-
Buffalo and a Western New York Grid (WNY-Grid), which provides a seamless and 
transparent mode of operation for grid users in the greater Buffalo region.  The WNY-
Grid also provides a unique framework for education, outreach, and training of grid 
technology and its application in the Western New York region.  Finally, it should be 
noted that we are in the process of widening the reach of WNY-Grid in order to develop a 
New York State Grid (NYS-Grid).  While the NYS-Grid is in its infancy, we have 
already secured commitments for participation by a variety of institutions in Western 
New York, the Southern Tier, Upstate New York, and New York City.  Some of these 
nodes will be brought on- line in early 2005.  
 
Center for Computational Research (CCR).  The majority of the work presented in 
this chapter was performed at the Center for Computational Research, SUNY-Buffalo. 
The Center maintains a wide variety of resources that were used during various phases of 
the ACDC-Grid implementation, including the following. 

1. Compute Systems.  A 3TF peak Dell Pentium4 system with Myrinet; A 6TF peak 
Dell PentiumIII system with fast Ethernet; A 3TF IBM Blade Server; A 64 
processor SGI Origin 3800; A 64 processor SGI Origin 3700 (Altix); A SUN 
cluster with Myrinet; An IBM SP; An 18 node Dell P4 visualization cluster; A 
heterogeneous bioinformatics system; Several SGI Onyx systems; Networks of 
workstations. 

2. Storage Systems. A 40TB RAID5 HP SAN system with 190TB of backup tape  
front-ended by 64 Alpha processors that is directly connected to CCR’s high-end 
compute platforms; Several NAS systems, some of which are targeted at CCR’s 
Condor flocks. 
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3. Visualization Systems: An 11'×8' Tiled Display Wall with 20 projectors; A 
FakeSpace ImmersaDesk R2; An SGI Reality Center 3300W; Several Access 
Grid Nodes; Miscellaneous PC-based visualization systems. 

4. Networking. SUNY-Buffalo is an Internet2 member and a participant in the 
Abeline network.  CCR is directly connected to Internet2. 

 
ACDC-Grid Overview. The development of the heterogeneous ACDC-Grid 
infrastructure has flourished recently with fund ing from an NSF/ITR. A variety of 
applications are available on ACDC-Grid, as are a variety of critical tools that we have 
developed.  An overview of the ACDC-Grid effort follows. 
 

1. Grid Core Infrastructure.  The core infrastructure for the ACDC-Grid includes the 
installation of standard grid middleware, the deployment of an active Web portal 
for deploying applications, dynamic resource allocation so that clusters and 
networks of workstations can be scheduled to provide resources on demand, a 
scalable and dynamic scheduling system, and a dynamic firewall, to name a few. 

2. Grid Monitoring, Scheduling, and Mining.  The ACDC-Grid provides an efficient 
and lightweight grid monitoring system, a sophisticated predictive job scheduler 
that integrates past performance of users with the knowledge of availability of 
compute resources and knowledge of the location of the requisite data, a backfill 
mechanism that allows the ACDC-Grid to maximize utilization while minimizing 
interference with job scheduling, and a grid-enabled mechanism for data mining. 

3. Data Grid and Storage Services.  The ACDC-Grid Data Grid has been developed 
from the ground up to transparently integrate with the ACDC-Grid Computational 
Grid and provide the user with a representation of their data that hides critical 
details, such as location, making the Grid appear as a single entity to the user.  
That is, from the user’s point of view, they have access to their data and 
computational resources upon which to process their data.  However, the user 
does not need to know the location of the data or computational resources.  This 
development included the design, analysis, and implementation of a data grid 
scenario manager and simulator.  The Data Grid is able to utilize historical 
information in order to migrate data to locations that are most efficient for its 
analysis. 

4. Applications and Collaborations.  The SUNY-Buffalo Grid Team has been 
working closely with a number of highly-visible grids, including the International 
Virtual Data Grid Laboratory, Grid3+ and its technical workgroups, Open Science 
Grid and its technical workgroups, the Northeast Bio-Grid, MCEER, NEES, NSF 
funded educational grid projects at SUNY-Buffalo, the NSF/NIH supported Grid-
enabled Shake-and-Bake package, transport modeling to support algal bloom 
tracking for event monitoring and response management, evolutionary aseismic 
design & retrofit (EADR), and OSTRICH, a general purpose software tool for 
parameter optimization. 

 
Monitoring.  An effective and efficient grid monitoring system was developed during the 
early stages of the prototype ACDC-Grid.  This monitoring system was critical to the grid 
development group and proved useful to early application adopters.  The ACDC-Grid 
monitoring system exploits the development of robust database servers.  The monitoring 
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system utilizes a MySQL database server, which can maintain millions of records and 
hundreds of simultaneous connections in a fast and stable manner. In fact, the ACDC-
Grid monitoring system currently contains statistics for over 300,000 computational jobs 
completed on CCR’s heterogeneous compute platforms and over 1,600,000 jobs 
completed on the Grid3 multi- institutional computational resources.  The ACDC-Grid 
monitoring infrastructure has proven to be robust and scalable, but lacks the necessary 
service-based tooling to be incorporated into a large general-purpose grid infrastructure. 
Therefore, our current efforts are targeted at a second-generation monitoring service that 
is more tightly integrated and configured with the unique computational resource it 
monitors. We believe that this second generation system will provide an order of 
magnitude more scalability, from tens of thousand to hundreds of thousand of servers.    
 
The current ACDC-Grid monitoring system includes the following features. 

1. Running/Queued Jobs. The ACDC-Grid monitoring system provides summary 
and statistics of currently running or queued jobs on Grid3. Summary charts are 
compiled based on total jobs, CPU hours, or runtime for either a user or group 
(i.e., virtual organization (VO)) over an individual resource, subset of resources, 
or the entire grid.  Each interactive chart provides the ability to display detailed 
job information. 

2. Job History. The ACDC-Grid monitoring system provides detailed historical job 
information including CPU consumption rates and job production rates for either 
an individual user or a group over a subset of grid resources. To date, ~1,600,000 
jobs that have run on Grid3 since October 2003. Summary charts are compiled 
from usage data based on user jobs or VOs for a given range of dates over a given 
set of resources.  Statistics such as total jobs, average runtime, total CPU time 
consumed, and so forth, are dynamically produced from the available database. 
Each interactive chart allows for detailed information to be displayed.  

3. ACDC Site Status. The ACDC-Grid monitoring system generates dynamic ACDC 
site status logs, reporting successful monitoring events as well as specific Grid3 
site errors corresponding to monitoring event failures. 

 
Scheduling.  The ACDC-Grid predictive scheduler uses a database of historical jobs to 
profile the usage of a given resource on a user, group, or account basis [46-54]. 
Determining accurate quality of service estimates for grid-enabled applications can be 
defined in terms of a combination of historical and runtime user parameters in addition to 
specific resource information.  Such a methodology is incorporated into the ACDC-Grid 
Portal, which continually refines the predictive scheduler parameters based, in part, on 
the data stored by the monitoring system.  
 
Workload also plays a significant role in determining resource utilization. The native 
queue schedulers typically use the designated job wall-time for managing resource 
backfill (i.e., small pockets of unutilized resources that are being held for a scheduled 
job). However, such systems may also use a weighted combination of node, process, and 
wall-time to determine a base priority for each job and subsequently modify this priority 
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in order to impose a fair share resource policy based on historical usage. The backfill 
system will allow a job with lower priority to overtake a job with higher priority if it does 
not delay the start of the prioritized job. The ACDC-Grid predictive scheduler uses 
historical information to better profile grid users and more accurately determine 
execution times. Our prototype predictive scheduling system is based on statistical 
principles [55] that allow jobs to more effectively run in a backfill mode.  
 
We consider the aforementioned shared- and distributed-memory computational 
resources at SUNY-Buffalo’s Center for Computational Research (CCR). The ACDC-
Grid Portal executes many grid-enabled scientific applications on several of the Center’s 
heterogeneous resources concurrently. Several applications have inter-dependent 
execution and data requirements that require reliable knowledge of job start and 
completion times. 
 
An explanation of the development of the ACDC-Grid predictive scheduler is best served 
by considering a snapshot of the queue for a single computational resource. Table 1 
shows 15 running and queued jobs on this resource (Dell P4 cluster with Myrinet) from 
six users, which initially completely occupy all processors on all nodes (i.e., all 516 
processors on the 258 dual-processor nodes). There are seven running jobs and eight 
queued jobs, where the queue job priority determines a relative rank for corresponding to 
the order that the queued jobs will start.  Note that the user requests the number of nodes, 
number of processes, and walltime queue parameters for each of the running and queued 
jobs. This is enough information to completely define the job execution and the native 
scheduler priority determination. 
 
Table 1. Sample computational resource queue snapshot. 

 
Jobid User Nodes Procs Walltime Status 
1 user2 32 64 360 running 
2 user1 32 64 360 running 
3 user1 32 64 360 running 
4 user1 32 64 360 running 
5 user1 32 64 360 running 
6 user3 64 128 500 running 
7 user5 34 68 720 running 
8 user4 96 192 720 1 
9 user5 64 128 360 2 
10 user5 64 128 480 3 
11 user5 128 256 720 4 
12 user6 128 256 720 5 
13 user5 128 256 720 6 
14 user6 96 192 306 7 
15 user5 64 128 480 8 

 
The native queue scheduler uses the designated job walltime for managing resource 
backfill and estimated job start and end times. Table 2 reports the native queue scheduler 
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estimates for start and end times for all running and queued jobs. The native scheduler 
uses a weighted combination of node, process, and walltime to determine a base priority 
for each job and subsequently modifies the base priority to impose a fair share resource 
policy. The fairshare value is based on historical usage and can be divided into user, 
group, and account associated with the job. This scheduling scheme is also based on 
advanced walltime reservations with backfill, where a job with lower priority can 
overtake a job with higher priority only if it does not delay the start of the prioritized job. 
The advanced reservation scheme also makes it possible to allocate resource in the future. 

 
Table 2. Native queue job execution start and end time. 

 
Jobid Walltime Starttime Endtime 
1 360 00:05:41 00:11:41 
2 360 00:05:41 00:11:41 
3 360 00:05:41 00:11:41 
4 360 00:05:41 00:11:41 
5 360 00:05:41 00:11:41 
6 500 00:05:41 00:14:01 
7 720 00:07:36 00:19:36 
8 720 00:11:41 00:23:41 
9 360 00:11:41 00:17:41 
10 480 00:14:01 00:22:01 
11 720 00:23:41 01:11:41 
12 720 00:22:01 01:10:01 
13 720 01:11:41 01:23:41 
14 306 01:10:01 01:15:07 
15 480 01:23:41 02:07:41 

 
The ACDC-Grid predictive scheduler uses a database of historical job executions to 
provide an improved profile of the usage of a given resource based on a user, group, or 
account basis. Workload also plays a significant role in determining average system 
utilization. Users will take advantage of scheduler feedback to determine the type of jobs 
that have the best turn around time. The users will submit jobs that give them the best 
service, resulting in a dynamic workload that adjusts to provide near-optimal utilization. 
Table 3 reports five Genetic Algorithm optimized user profile parameters that were used 
to determine a more efficient job execution. 
 
Table 3. ACDC-Grid user profile information. 

 
User Efficiency Node Walltime Job Age 
user1 0.568 33 382 61 17 
user2 0.421 44 447 60 38 
user3 0.650 64 426 19 23 
user4 0.717 96 424 16 30 
user5 0.612 44 255 138 35 
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user6 0.691 19 423 138 20 
 
This methodology is incorporated into the ACDC-Grid Portal, where it continually 
verifies and evolves the predictive scheduler parameters based on the current 
computational grid state. The resulting system delivers a self-adapting job start times 
with a factor of 2-3 times more accurate than the native queue systems.  
 
The ACDC-Grid predictive scheduler backfill algorithm was initially designed to be 
extensible to a general set of multi-disciplinary applications, though it has only been 
deployed for the SnB application environment. The prototype results have been 
impressive. Based on predictive analysis, the ACDC-Grid infrastructure determines the 
length of time idle processors will be available on all computational resources. For 
example, over a 6 month period, the ACDC-Grid predictive scheduler has allowed 3709 
heterogeneous jobs to be completed on an average of 21 processors per job with an 
average runtime of 7.3 hr consuming a total of 410,000 CPU hrs at the rate of 2250 CPU 
hrs/day. 
 
The ACDC-Grid predictive scheduler estimates are used for determining whether or not a 
computational grid resource can meet the quality of service requirements defined by the 
current workload.  If a computational grid resource will not meet the quality of service 
expectations required, the ACDC-Grid infrastructure will search for a grid resource that 
can meet the expectations and determine whe ther or not it is feasible to migrate the job in 
question to a more suitable resource. The overall computational grid resource statistics 
are compiled in the ACDC-Grid database and can be queried by grid users and 
administrators in order to better understand the “state of the grid”.  
 
Data Grid.  The ACDC-Grid enables the transparent migration of data between various 
storage element resources while preserving uniform access for the user, where basic file 
management functions are provided via a platform-independent Web interface, as shown 
in Figure 1.  
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Figure 1. ACDC Data Grid File Manager Web user interface. 

 
We have identified five use cases for the Data Grid file management infrastructure. The 
infrastructure architecture description for a general View, Edit, Copy, Upload, and 
Download use case are presented in Figures 2a-b, 2c, 2d-e, respectfully.  
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Figure 2a (left) and 2b (right). ACDC Data Grid View and Edit file use case 
description.  

The View use case copies a designated file from the users’, group, or public accessible 
Data Grid to a temporary Grid Portal scratch space and presents the file contents through 
the Web interface. The temporary copy of the file stored in the Grid Portal scratch space 
is removed after viewing is complete. The Edit use case copies the from the users, group, 
or public accessible Data Grid to a temporary Grid Portal scratch space and presents the 
file for editing through the Web interface. After successfully editing the file, the original 
file is overwritten by the edited file. 
 

 
Figure 2c. ACDC Data Grid Copy file use case description. 

 
The Copy use case copies a designated file from the users, group, or public accessible 
Data Grid to a temporary Grid Portal scratch space and uploads the new file into the Grid 
Portal Storage Element. The new file attributes are updated in the ACDC Data Grid 
database after a successful upload into the Storage Element. 
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Figure 2d (left) and 2e (right). ACDC Data Grid Upload and Download file use case. 

 
The Upload use case uploads files via the Web interface into a Grid Portal scratch space, 
applying the directory and file abstractions, and copying the files to the Grid Portal 
Storage Element. The ACDC Data Grid database is updated with the new directory and 
file attributes upon successful upload, and the Grid Portal scratch files are deleted. The 
Download use case assembles the requested files by querying the ACDC Data Grid 
database for individual file and directory locations into the Grid Portal scratch space. A 
download container is assembled from the abstracted directory and file attributes 
obtained from the database and compressed for download. The compressed container is 
then downloaded to the user through the Web interface. 
 
The gathering of statistical information and the display of such information through a 
common Web interface are of particular use to developers and administrators. The 
metadata information and the corresponding data repository for each file are maintained 
in a global MySQL database table. Algorithms have been implemented to periodically 
migrate files between repositories in order to optimize usage of resources based on the 
users’ utilization profile. This leads to localization of data files for the computational 
resources that require them. Conversely, the Chimera Virtual Data System (VDS), which 
combines a virtual data catalog for representing data derivation procedures and derived 
data, is used by GriPhyN high-energy physics collaborators [56]. We plan to integrate the 
Chimera system into the general-purpose ACDC-Grid infrastructure with distributed 
“Data Grid” services in order to enable on-demand execution of computation schedules 
constructed from database queries. In addition, this system will provide a catalog that can 
be used by application environments to describe a set of application programs, and then 
track all the data files produced by executing those applications.  
 
Storage Resource Managers (SRMs) [57] are middleware components that provide 
dynamic space allocation and file management on shared storage components of a grid 
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[58]. SRMs support protocol negotiation and a reliable replication mechanism.  The SRM 
specification standardizes the interface, thus allowing for a uniform access to 
heterogeneous storage elements [59-62]. The SRM standard allows independent 
institutions to implement their own SRMs. SRMs provide a flexible policy decision 
specification process that can be made independently by each implementation for all grid-
enabled resources. Furthermore, the tight integration of the computational grid predictive 
scheduler with the data grid network bandwidth availability statistics is essential for 
scheduling data migrations for computational jobs.  The ACDC-Grid incorporates the 
Network Weather Service [63] bandwidth and latency information obtained from the 
computational and data resources into the predictive scheduler algorithms for job staging 
and execution requirements. Unfortunately, this information is insufficient for 
determining network bandwidth availability or forecasting essential network statistics. To 
address this issue, we have deployed software throughout the existing IP networking 
infrastructure that can be exploited for the development of network forecasting grid 
services for the ACDC-Grid. This software utilizes the port level network statistics 
obtained from switches and routers distributed throughout the SUNY-Buffalo network 
fabric and builds a database for data mining this valuable information. We propose 
coupling the network information services, predictive scheduler service, and a data grid 
migration forecasting services into a tool that will achieve improved network and 
computational resource utilization. 
 
Dynamic Integration of Resources.  The ACDC-Grid introduced the concept of 
dynamic resource allocation during the GRID3 intensive application period during 
Supercomputing 2003 and Supercomputing 2004. The amount of computational 
resources provided to the GRID3 user base was dynamically rolled into and out of 
production on a daily basis. As a proof of concept, for a two-week period, 400 processors 
of a 600 processor Pentium4 cluster were rolled out of the local CCR pool of resources 
and into the GRID3 production pool at 8:00 AM, with the inverse procedure taking place 
at 8:00 PM. The production jobs running on dynamically shared resources were managed 
through the advanced reservation capabilities of the queuing system [64], thus requiring 
no administrator intervention in managing the job start or completion. These resources, 
unlike a similar concept used in Condor flocking, were queue managed and reconfigured 
on the fly with enhanced grid node security, nfs mounted filesystems, grid user accounts 
and passwords, grid-enabled software infrastructure, and so forth, and were ready to 
accept production jobs without system administrator intervention. We are working to 
extend this automated ACDC-Grid infrastructure to provide on-demand computational 
resources from multiple IT domain-managed clusters that can be configured by the 
respective administrators using a grid service. 
 
Grid Research Collaborations. The ACDC-Grid exploits a grid-enabling template 
framework that includes a dynamically created HTML grid console for the detailed 
monitoring of computational grid jobs. Results from previous studies have been used in 
the design of the Globus-based ACDC-Grid that serves researchers at the Center for 
Computational Research and the Hauptman-Woodward Medical Research Institute, 
located in Buffalo, NY.  In particular, the extensive framework of HTML, JavaScript, 
PHP, MySQL, phpMyAdmin, and the Globus Toolkit provide a production-level ACDC-
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Grid for scientific applications and data integration as required by the applications 
community. The rapid expansion of the Grid community has facilitated the ACDC-Grid 
collaboration with many high quality laboratories and testbeds for developing robust and 
scalable grid infrastructure. The ACDC-Grid has been hardened using grid research 
collaboration memberships and participation over the past several years. 
 
Grid3.  The ACDC-Grid membership in the international Virtual Data Grid Laboratory 
(iVDGL) provides access to international heterogeneous computing and storage resources 
for the purpose of experimentation in grid-enabled data-intensive scientific computing. 
The ACDC-Grid team participates in the (i) iVDGL iGOC, which is used as the central 
coordination point for grid technical problem resolution, (ii) grid monitoring technical 
working group, and (iii) grid troubleshooting working group. The iVDGL and other U.S. 
Grid projects have sponsored several Data Grid activities, including the Grid3 
collaboration that has deployed an international Data Grid with participation from more 
than 28 sites across the United States (including the ACDC-Grid site) and Korea. This 
facility is operated by the U.S. Grid projects iVDGL, Grid Physics Network (GriPhyN) 
and the Particle Physics Data Grid (PPDG), and the U.S. participants in the LHC 
experiments ATLAS and CMS. The Grid3 collaboration uses the Virtual Data Toolkit 
(VDT) [65] for providing the Grid cyberinfrastructure for the scientific and computer 
science applications from a variety of disciplines including physics, astrophysics, 
biology, and astronomy.  
 
The ACDC-Grid Virtual Organization provides computationa l resources, expertise, users, 
applications, and core grid job monitoring services for the Grid3 collaboration. The Grid3 
resources are used by 7 different scientific applications, including 3 high-energy physics 
simulations and 4 data analyses in high-energy physics, structural biology (Shake-and-
Bake), astrophysics, and astronomy. The ACDC-Grid resources processed over 175,000 
computational jobs submitted by all of the scientific applications since October, 2003, 
accounting for over 25% of the total computational jobs processed by the Grid3 
resources. The ACDC-Grid resources continue to process computational jobs and provide 
critical computational job monitoring for the Grid3 collaboration members (ACDC Job 
Monitoring for Grid3 is at http://acdc.ccr.buffalo.edu).  
 
The International Virtual Data Grid Laboratory (iVDGL) is a global Data Grid that 
provides resources for experiments in physics and astronomy [66]. Its computing, 
storage, and networking resources in the U.S., Europe, Asia, and South America provide 
a unique computational laboratory that will test and validate Grid technologies at 
international and global scales. The Grid2003 project [67] was defined and planned by 
Stakeholder representatives in an effort to align iVDGL project goals with the 
computational projects associated with the Large Hadron Collider (LHC) experiments.  
See Figure 3. 
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Figure 3. Grid2003 project Web page site catalog and status. 

The Grid Laboratory Uniform Environment (GLUE) [68] collaboration was created in 
Feb. 2002 to provide a focused effort to achieve interoperability between the U.S. physics 
Grid projects and the European projects.  Participant U.S. projects include iVDGL, Grid 
Physics Network (GriPhyN) [69], and Particle Physics Data Grid (PPDG) [70].  
Participant European projects include the European Data Grid (EDG) Project [71], Data 
Transatlantic Grid (DataTAG) [72], and CrossGrid [73]. Since the initial proposal for the 
GLUE project, the LHC Computing Grid (LCG) project was created at CERN [74] to 
coordinate the computing and Grid software requirements for the four LHC experiments, 
with a goal of developing common solutions. One of the main project goals is deploying 
and supporting global production Grids for the LHC experiments, which resulted in the 
Grid2003 “production” grid. 

Goals of the Grid2003 Project 

The iVDGL Steering Committee set the following broad goals for the Grid2003 project. 
• Provide the next phase of the iVDGL Laboratory. 
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• Provide the infrastructure and services needed to demonstrate LHC production and 
analysis applications running at scale in a common grid environment. 

• Provide a platform for computer science technology demonstrators. 
 

The goals of this project included meeting a set of performance targets, using metrics 
listed in a planning document.  The central project milestone can be summarized as 
delivery of a shared, multi-Virtual Organization (VO), multi-application, grid laboratory 
in which performance targets were pursued through deployment and execution of 
application demonstrations during the period before, during, and after the SC2003 
conference in Phoenix (November 16-19).  The organization of this project included the 
creation of teams representing application groups, site administrators, middleware 
developers, core service providers, and operations. The active period of this project was a 
5-month period from July through November 2003. It is interesting to note that 
subsequent to this period, Grid3 remains largely intact, with many applications running.  
 
The Grid2003 Project deployed, integrated and operated Grid3 with 27 operational 
processing sites comprising at peak ~2800 CPUs for more than 3 weeks.  Progress was 
made in other areas that are important to the iVDGL mission. 

• Multiple VO grid.  Six different virtual organizations participated and 
successfully deployed 10 applications.  All applications were able to run on sites 
that were not owned by the host organization. Further, the applications were all 
able to run on non-dedicated resources. 

• Multi-disciplinary grid.  During the project, two new applications, the SnB 
structural biology application and an application in chemical informatics, were run 
across Grid3. The fact that these could be installed and run on a Grid infrastructure 
designed and installed for Particle and Astrophysics Experiments provides the 
members of iVDGL with confidence that this grid can be adapted to other 
applications as needed. 

• Use of shared resources.  Many of the resources brought into the Grid3 
environment were leveraged facilities in use by other VO’s. 

• Dynamic resource allocation.  In addition to resources that were committed 24×7, 
the Computational Research (CCR) configured their local schedulers to bring 
addit ional resources in to and out of Grid3 on a daily basis, satisfying local 
requirements and Grid3 users. 

• International connectivity.  One site was located abroad (Kyunpook National 
University, Korea). 

 
Over the course of several weeks surrounding SC2003, the Grid2003 project met its 
target goals. 

 
1. Number of CPUS. With a target of 400 CPUs, Grid2003 successfully incorporated 

2163 processors. More than 60% of available CPU resources are non-dedicated 
facilities.  The Grid3 environment effectively shared resources not directly owned by 
the participating experiments. 

2. Number of Users . With a target of 10 users, Grid2003 successfully supported 102 
users. About 10% of the users are application administrators who do the majority of 
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the job submissions. However, more than 102 users are authorized to use the 
resources through their respective VO’S services. 

3. Number of Applications . With a target of at least 4 physics applications, Grid2003 
successfully supported 10 applications, including at least one from each of the five 
GriPhyN-iVDGL-PPDG participating experiments, the SnB program from structural 
biology, and GADU/Gnare genome analysis. Note that these applications continue to 
run on Grid3.  

4. Number of sites running Concurrent Applications . With a target of at least 10 
concurrent applications, Grid2003 supported 17 concurrent applications.  This 
number is related to the number of Computational Service sites defined on the catalog 
page and varies with the application. 

5. Data Transfers Per Day. With a target of 2-3 TB of data transfer daily, Grid2003 
achieved a 4 TB/day transfer rate. This metric was met with the aid of the GridFTP-
demo. 

6. Percentage of Resources Used. With a target of utilizing 90% of the resources, 
Grid2003 was only able to achieve 40-70% of the resources.   

7. Peak Number of Concurrent Jobs . With a peak target of 1000 concurrent jobs, 
Grid2003 was able to support 1100 concurrent jobs.  On November 20, 2003 there 
were sustained periods when over 1100 jobs ran simultaneously.   

 
IBM NE BioGrid.  The IBM Northeast Bio-Grid (IBM NE BioGrid) collaboration 
includes IBM, MIT, Harvard, and the ACDC-Grid.  It uses the IBM Grid Toolbox V3 
[75] that delivers a set of grid services built with Open Grid Services Architecture 
(OGSA).  OGSA enables the communication across heterogeneous, geographically 
dispersed environments in addition the IBM General Purpose File System (GPFS) [76] 
and provides a parallel scalable global filesystem that is used for the ACDC-Grid 
computational resources. This 4.3TB single filesystem uses 34 servers with 2 hard drives 
connected by Myrinet and has provided grid-enabled I/O intensive scientific applications 
bandwidth in excess of 1,800 MB/sec. The IBM NE BioGrid and the Grid3 collaboration 
use very different Grid cyberinfrastructure middleware for grid-enabled resource 
communication and computational job executions.  
 
HP GridLite.  The ACDC-Grid collaboration with HP on GridLite provides another Grid 
cyberinfrastructure that we believe will provide core infrastructure for the SUNY-Buffalo 
ACDC-Campus-Grid that is currently under construction. GridLite will provide a 
lightweight infrastructure that can easily be deployed on pocketPCs, laptops, PDAs, 
cellular phones, and other portable devices on the campus. Many of these devices are also 
being grid-enabled by our NEESgrid [77] collaborators, SUNY-Buffalo’s Structural 
Engineering and Earthquake Simulation Laboratory (SEESL) [78], which is the flagship 
laboratory in the Multidisciplinary Center for Earthquake Engineering Research 
(MCEER) [79], which will be an important node of a nationwide “collaboratory” in the 
NSF’s Network for Earthquake Engineering Simulation (NEES). The NEESgrid software 
release 3.0 [80] point of presence, tele-presence system, and software integration provide 
the ACDC-Grid with grid services and testbeds for hardening the core grid-enabling 
instrument and device cyberinfrastructure. The MCEER, NEES, CSEE, and CCR 
Collaboration Platform tightly integrates all of the CCR’s common interests and 
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missions. CCR provides the machine room space to house and maintain a high-powered 
dual processor server capable of 1) serving a custom Web site with a Gigabit Ethernet 
connection to the University backbone, 2) serving a Web accessible MySQL database, 3) 
serving 3D stereo graphics to the SGI 3300W Visualization Display, 4) serving 2D and 
3D graphics to the Tiled-Display Wall, 5) serving streaming video to the Access Grid for 
world-wide presentation, 6) staging and post-processing platform for CCR’s 
Computational Grid (ACDC-Grid) analysis and results, 7) providing a common platform 
for exchange of information and visualization, and 8) fostering collaborations with other 
University departments.  
 
Open Science Grid.  The ACDC-Grid is a founding participant of the Open Science Grid 
(OSG), a cooperative venture that brings together laboratory and university facilities, grid 
technology providers, and the application communities, for the purpose of engineering 
and building a common Grid infrastructure that will ensure the necessary robust, 
persistent, computational, and data services needed by laboratories, experiments, and 
application managers. The OSG provides a framework for coordinating activities with the 
goal of enabling a common grid infrastructure and shared resources for the benefit of 
scientific applications. The ACDC-Grid team participate in the a) OSG Security Incident 
Handling Activity, b) OSG Storage Services Activity, c) OSG-0 Activity, and d) the OSG 
Blueprint Activity [81]. In accordance with the magnified risk and the circumscribed 
communities, the Security Incident Handling activity group (SIHag) was established with 
the goal to reduce risk through the establishment of guidelines, policies, and methods for 
security incident handling within the OSG and iVDGL communities.  
 
Grid Research Advancements. Several distributed monitoring systems have been 
designed to track the status of large networked systems. Some of these systems are 
centralized, where the data is collected and analyzed at a single central host, while others 
use a distributed storage and query model. Ganglia [82-83] uses a hierarchical system, 
where the attributes are replicated within clusters using multicast and then cluster 
aggregates are further aggregated along a single tree. Sophia [84-85] is a distributed 
monitoring system, currently deployed on Planet-Lab [86], and is based on a declarative 
logic-programming model, where the location of query execution is both explicit in the 
language and can be calculated during the course of evaluation. TAG [87] collects 
information from a large number of sensors along a single tree. IBM Tivoli Monitoring 
[88] also provides the foundation for additional automated Best Practices via Proactive 
Analysis Components (PACs) for managing business critical hardware and software 
including middleware, applications, and databases. A number of existing grid information 
systems such as MDS2 [89-90], GIS [91], R-GMA [92-93], and Hawkeye [94] each 
provide a core distributed information management system designed to support a range of 
applications and services such as scheduling, replica selection, service discovery, and 
system monitoring. All of these systems use a client-server model in which Information 
Providers collect or generate data and supply this data to Information Services. We 
currently work with the Globus Global Information Service (GIS) and the Monitoring and 
Discovery Service (MDS) working groups through our Grid3 and OSG collaborations. 
The ACDC-Grid Monitoring and Information Services – Core Infrastructure (MIS-CI) 
deployed on our grid-enabled resources has been developed through this collaboration, as 
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shown in Figure 4. The MIS-CI is architected to be a lightweight non- intrusive 
monitoring and information service that can be throttled by the Resource Provider in a 
dynamic fashion. The MIS-CI is self-monitoring, secure, and hierarchical in design 
making it extremely scalable with tuneable information time scales. 
 

 

Figure 4. ACDC-Grid Monitoring and Information Services – Core Infrastructure 
architecture description. 

 
Our monitoring system is being enhanced to 
  

1. provide a programmatic interface to the ACDC Job Monitoring database for 
running, queued, or historical jobs, complete with the current site status metrics, 

2. provide integration with MonaLisa [95] and the Grid3 site status catalogue for 
defining difference metrics on job monitoring, resource utilization, and policy 
metrics, 

3. provide integration with the Globus MDS provider development team for 
providing XML formatted job information and site status metrics, 

4. provide integration of our predictive scheduling estimates based on resource 
policy specifications, 

5. provide resource specific CPU availability for Grid3 resources, ACDC-Grid 
resources, and Virtual Organizations, 

6. provide currently available free nodes and predictive scheduling capabilities of 
job execution start times based on running, queued, and submitted job 
characteristics, including site policy constraints, 
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7. provide data grid historical and near real- time estimates of bandwidth and 
utilization of grid-enabled repositories, and 

8. harden the secure, lightweight, scalable distributed hierarchical imbedded 
MySQL database ACDC-Grid monitoring daemon infrastructure for 
heterogeneous computational grid hardware resources and heterogeneous grid 
infrastructure middleware. 

This enhanced and hardened service can then be utilized by several other open source 
applications and included in the Globus, NMI [96-97], and VDT software suites for 
production grid monitoring efforts.  
 
Grid Research Application Abstractions and Tools. The Grid-enabling Application 
Templates (GATs) used for porting scientific and engineering applications to the ACDC-
Grid use abstraction as the process of combining multiple smaller operations into a single 
unit that can be referred to by a stage. Each stage is named and may contain a template 
for imposing fine-grained application input file generation, automated parallelization, 
intermediate result file monitoring, exception handling, and overall application 
performance metrics. Using the ACDC-Grid GAT abstraction allows programmers to 
solve problems at a high level, while deferring non-critical details. This has proved to be 
an effective problem solving strategy in porting codes from structural biology, earthquake 
engineering, and the environmental and hydrodynamic domains to the ACDC-Grid 
infrastructure. The application developers have the ability to drill down into each stage or 
split stages into logical units for their specific application. For example the Shake-and-
Bake application uses seven stages in defining a computational and data grid job: 1) 
Software, 2) Template, 3) General Information, 4) Data Preparation, 5) Job Definition, 6) 
Review, and 7) Execution Scenario. This GAT defines the grid-enabled software 
application; required and/or optional data files from the ACDC Data Grid; computational 
requirements are input or a template defined computational requirement runtime estimate 
is selected; application specific runtime parameters or default template parameter 
definitions are used; the grid user accepts the template complete job definition workflow 
or corrects any part of job definition; and the grid user has the ability to input an 
execution scenario or select a ACDC-Grid determined template defined execution 
scenario. After these stages have been completed the grid user can view specific grid job 
completion status, grid job current state, detailed information on all running or queued 
grid jobs, grid-enabled application specific intermediate and post processing grid job 
graphics, as well as plots and tables.  Figure 5 describes a typical ACDC-Grid GATs 
workflow definition and execution. The current GAT workflow is robust enough to 
handle quite complicated definitions that integrate intermediate job status and statistics 
on a dynamic basis. The GAT API is used extensively for integration the ACDC 
Computational Grid with the ACDC Data Grid in a seamless fashion.  
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Figure 5. ACDC-Grid Grid-enabling Application Template definition and execution 
description. 

 
Leveraging our experience with Grid3 and OSG, it is evident that the current Grid 
security infrastructure is deficient. Specifically, many Grids use a grid-mapfile for 
mapping remote users to a single local grid user account. This can lead to several 
potential security problems. We are currently developing infrastructure to mitigate these 
problems, as shown in Figure 6. 
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Figure 6. ACDC-Grid Proxy+ enhanced grid security infrastructure. 

Optimizing SnB on Grids. Genetic Algorithms (GAs) were developed by Holland [98] 
and are based on natural selection and population genetics. Traditional optimization 
methods focus on developing a solution from a single trial, whereas genetic algorithms 
operate with a population of candidate solutions.  We have constructed a GA to 
determine an efficient set of SnB input parameters in an effort to reduce the time-to-
solution for determining a molecular crystal structure from X-ray diffraction data.  We 
use a population of candidate SnB input parameters. Each member of the population is 
represented as a string in the population and a fitness function is used to assign a fitness 
(quality) value for each member. The members in the population obtain their fitness 
values by executing the SnB program with the input parameter values represented by their 
strings. Using “survival-of-the-fittest” selection, strings from the old population are used 
to create a new population based on their fitness values. The member strings selected can 
recombine using crossover and/or mutation operators. A crossover operator creates a new 
member by exchanging substrings between two candidate members, whereas a mutation 
operator randomly modifies a piece of an existing candidate. This procedure of 
combining and randomly perturbing member strings has, in many cases, been shown to 
produce stronger (i.e., more fit) populations as a function of time (i.e., number of 
generations). 

We use the Sugal [99] (sequential execution) and PGAPack [100-101] (parallel and 
sequential execution) genetic algorithm libraries. The Sugal library provided a sequential 
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GA and has additional capabilities, including a restart function, which proved to be very 
important when determining fitness values for large molecular structures. The PGAPack 
library provided a parallel master/slave MPICH/MPI implementation that proved very 
efficient on distributed- and shared-memory ACDC-Grid compute platforms. Other key 
features include C and Fortran interfaces, binary-, integer-, real-, and character-valued 
native data types, object-oriented design, and multiple choices for GA operators and 
parameters.  In addition, PGAPack is quite extensible. The PGAPack library was 
extended to include restart functionality and is currently the only library used for the 
ACDC-Grid production work. 

The SnB computer program has approximately 100 input parameters, though not all 
parameters can be optimized. For the purpose of this study, 17 critical parameters were 
identified for participation in the optimization procedure.  Eight known molecular 
structures were initially used to evaluate the genetic algorithm evolutionary molecular 
structure determination framework performance.  These structures are 96016c [102], 
96064c [103], crambin [104-105], Gramicidin A [106], isoleucinomycin [107], pr435 
[108], Triclinic Lysozyme [109], and Triclinic Vancomycin [110]. 

In order to efficiently utilize the computational resources of the ACDC-Grid, an accurate 
estimate must be made in terms of the resource requirements for SnB jobs that are 
necessary for the GA optimization.  This includes runs with varying parameter sets over 
the complete set of eight known structures from our initial database.  
 
This is accomplished as follows.  First, a small number of jobs are run in order to 
determine the required running time for each of the necessary jobs.  Typically, this 
consists of running a single trial for each of the jobs in order to predict the time required 
for the required number of trials for the job under consideration.   
 
Approximately 25,000 population members were evaluated for the eight known 
molecular structures and stored in a MySQL database table, as shown in Figure 7.  
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Figure 7. MySQL database table for SnB trial results. 
 

From these trial results, the mean (
j

X ) and standard deviations ( js ) are calculated for 
each input parameter j and used to determine the standard scores ( j

iz ) for each trial i, 
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for all i and j, where the trial parameter value for trial i and parameter j is j
iX .  Figure 8 

shows the standard scores of the parameters under consideration. 
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Figure 8. Standard scores for Pearson product-moment correlation coefficient 
calculations. 
 
The Pearson product-moment correlation coefficients ( j

kr ) are calculated for input 
parameter j and molecular structure k by 
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for all j and k, where N denotes the degrees of freedom and runtime
kz  represents the standard 

score of the GA trial run time. Refer to Figure 9.  
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Figure 9. Pearson product-moment correlation coefficient database table. 
 
The input parameters that have the largest absolute magnitude Pearson product-moment 
correlation coefficient with respect to the observed trial run times are selected and used to 
form a predictive run time function that is fit using a linear least squares routine  
 

jj
kj

runtime
i XraX ∑= , 

 
where the observed runtime

iX  trial run time is fit to a selected sub-set of input parameter 

values j, jX  denotes the input parameter value, j
kr denotes the respective molecular 

structure k Pearson product-moment correlation coefficient, and ja denotes the linear 
least square fit coefficients for each j input parameter. We use this function within the 
grid-enabled data-mining infrastructure to estimate the maximum number of SnB GA 
generations and the maximum size of the population that would run on a given 
computational resource within the specified time frame. 
 
The ACDC-Grid infrastructure automatically updates the correlation coefficients based 
on the availability of new trial data appearing in the SnB trial result table. Thus, run time 
estimates for any given structure continually evolve throughout the GA optimization 
process. 
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For example, if there are 50 processors available for 150 minutes on ACDC-Grid 
compute platform “A”, we are interested in determining the maximum number of GA 
generations and the size of the population that can run on “A” and complete within 150 
minutes.  Based on this information, the data mining algorithms can make intelligent 
choices of not only which structures to evaluate, but they can completely define the SnB 
GA job that should be executed. This type of run time prediction is an essential 
component of our system for providing a level of quality of service.  Further, in our 
experience, this type of run time parameter-based prediction is almost always necessary 
when queue managed computational resources are employed. 

Grid-Enabled Data Mining with SnB. The SnB grid-enabled data mining application 
utilizes the ACDC-Grid infrastructure. A typical SnB job uses the Grid Portal to supply 
the molecular structures parameter sets to optimize, the data file metadata, the grid-
enabled SnB mode of operation (dedicated or back fill), and the SnB termination criteria. 
The Grid Portal then assembles the required SnB application data and supporting files, 
execution scripts, database tables, and submits jobs for parameter optimization based on 
the current database statistics. ACDC-Grid job management automatically determines the 
appropriate execution times, number of trials, number of processors for each available 
resource, as well as logging the status of all concurrently executing resource jobs.  In 
addition, it automatically incorporates the SnB trial results into the molecular structure 
database, and initiates post-processing of the updated database for subsequent job 
submissions.   

The Grid Portal then assembles the required SnB application data and supporting files, 
execution scripts, database tables, and submits jobs for parameter optimization based on 
the current database statistics. ACDC-Grid job management automatically determines the 
appropriate execution times, number of trials, number of processors for each available 
resource, as well as logging and status of all concurrently executing resource jobs. In 
addition, it automatically incorporates the SnB trial results into the molecular structure 
database, and initiates post-processing of the updated database for subsequent job 
submissions.  Figure 10 shows the logical relationship for the SnB grid-enabled data 
mining routine described. 
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Figure 10. ACDC-Grid grid-enabled data mining diagram. 

For example, starting September 8, 2003, a backfill data mining SnB job was activated at 
the Center for Computational Research using the ACDC-Grid computational and data 
grid resources. The ACDC-Grid historical job-monitoring infrastructure is used to obtain 
the jobs completed for the period of September 8, 2003 to January 10, 2004, as shown in 
Figure 11. 
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Figure 11. ACDC-Grid job monitoring information for all resources and users. 
 
The activated data mining SnB job template is being run by user mlgreen.  By hovering 
over the bar in the chart, as shown in Figure 12, one can see mlgreen’s job statistics.  
Further, notice that 3118 jobs have been completed on the ACDC-Grid resources over 
this time period. The ACDC-Grid job monitoring also dynamically reports job statistics 
for the data mining jobs. The total number of jobs completed by all users on all resource 
is 19,868 where the data mining jobs represent 15.69% of the total. The average number 
of processes for a data-mining job was 19.65 and the total number of processors used 
over this period was 433,552, where the data mining jobs accounted for 16.85% of the 
total. The data mining jobs consumed 291,987 CPU hours, which was 19.54% of the total 
CPU hours consumed (1,494,352 CPU hours). 
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Figure 12. ACDC-Grid job monitoring statistics for user mlgreen. 
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Figure 13. ACDC-Grid job monitoring statistics for user mlgreen. 
 
A subsequent mouse click on the bar chart drills down further describing the jobs 
completed by user mlgreen. Here, we see five computational resources that processed the 
3118 data mining jobs. The statistics for the Joplin compute platform are shown in Figure 
13.  Note that all statistics are based only on the jobs completed by the mlgreen user. 
There were 869 jobs processed by the Joplin compute platform representing 27.87% of 
the 3118 data mining jobs. 
 
Clicking on the bar chart drills down into a full description of all jobs processed by the 
Joplin compute platform, as shown in Figure 14. The information presented includes job 
ID, username, group name, queue name, node count, processes per node, queue wait 
time, wall time used, wall time requested, wall time efficiency, CPU time, physical 
memory used, virtual memory used, and job completion time/date. 
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Figure 14. ACDC-Grid job monitoring tabular accounting of completed job 
statistics. 
 
The ACDC-Grid data mining backfill mode of operation only uses computational 
resources that are currently not scheduled for use by the native queue scheduler. These 
resources are commonly called “backfill” as users can run jobs on the associated nodes 
without affecting the queued jobs. Many queues and schedulers give this information in 
the X number of nodes available for Y amount of time. The ACDC-Grid infrastructure 
monitors this information for all of the computational resources and stores this 
information in a MySQL database table, as shown in Figure 15. 
 
Figure 15 also shows the number of processors and wall time that are available for each 
resource. Note a value of –1 for the available wall time represents an unlimited amount of 
time (no currently queued job require the use of these processors). The activated data 
mining template can obtain the number of processors and wall time available for a given 
compute platform and then check the status of the platform before determining the actual 
GA SnB data mining job parameters.  See Figure 16. 
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Figure 15. ACDC-Grid backfill information for all resources. 
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Figure 16. ACDC-Grid computational resource status monitor. 
 
Using the Pearson product-moment fit function derived earlier, the new data mining job 
run time is estimated based on the current ACDC-Grid SnB molecular structure database 
information. The data mining job template is then executed leading to the migration and 
submission of the designed data-mining job to the respective ACDC-Grid computational 
resource. 
 
The activated data-mining template has two options of stopping criteria, as follows. 

1. Continue submitting SnB data mining application jobs until the optimal 
parameters have been found based on pre-determined criteria. 

2. Continue indefinitely (the data mining template is manually de-activated by the 
user when optimal parameters are found). 

This illustrative example summarizes the evolutionary molecular structure determination 
optimization of the Shake-and-Bake method as instantiated in the SnB computer program. 
 
The ACDC data grid complements the ACDC computational grid in terms of managing 
and manipulating these data collections. As discussed, the goal of the ACDC data grid is 
to transparently manage data distributed across heterogeneous resources, providing 
access via a uniform (Web) interface. In addition, we also enable the transparent 
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migration of data between various resources while preserving uniform access for the user.  
See Figure 17.  
 

 
Figure 17. ACDC data grid Java tree view of files. 

The hierarchical display does not list the file attribute data, so a list-based display has 
also been developed that can be used for sorting data grid files based on available 
metadata (e.g., filename, file size, modification time, owner, etc.), as shown in Figure 18. 
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Figure 18. ACDC data grid list-based view of sorted user files. 

Basic file management functions are available via a platform-independent user- friendly 
Web interface that includes file transfer capabilities, a simple Web-based file editor, an 
efficient search utility, and the logical display of files for a given user in three divisions 
(user/ group/public). Collating and displaying statistical information is particularly useful 
to administrators for optimizing usage of resources. The ACDC data grid infrastructure 
periodically migrates files between data repositories for optimal usage of resources. The 
file migration algorithm depends upon a number of factors, including the following: 

• User access time 
• Network capacity at time of migration 
• User profile 
• User disk quotas on various resources 

 
Further, we have the ability to mine log files, which aids in the determination of the 
following: 

• The amount of data to migrate in one cycle 
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• The appropriate migration cycle length 
• The file access pattern of a data grid user 
• The access pattern for public or group files 

 
The user global file-aging attribute is indicative of a user’s access across their own files 
and is an attribute of a user’s profile. The local file aging attribute is indicative of overall 
access of a particular file by users having group or public access. The latter is an attribute 
of a file and is stored in the file management data grid table. During migration, these 
attributes are used to determine the files that are to be migrated from the grid portal 
repository to a remote resource repository. Specifically, file migration is a function of 
global file aging, local file aging, and resource usage (e.g., the previous use of files on 
individual compute platforms is a factor in determining file migration). By tracking the 
file access patterns of all user files and storing this information in the associated database 
tables, the ACDC data grid infrastructure can automatically determine an effective 
repository distribution of the data grid files.  See Figure 19 for a schematic of the 
physical data ACDC data grid. 
 

 
Figure 19. ACDC data grid repository location, network bandwidth, and size. 

Support for multiple access to files in the data grid has been implemented with file 
locking and synchronization primitives.  The ACDC data grid also provides security for 
authentication and authorization of users, as well as policies and facilities for data access 
and publication. The ACDC data grid algorithms are continually evolving to minimize 
network traffic and maximize disk space utilization on a per user basis.  This is 
accomplished by data mining user usage and disk space requirements in a ubiquitous and 
automated fashion. 
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One advantage of SnB is that it can run in either a loosely coupled or tightly coupled 
fashion, it uses a database management system, it can take advantage of computational 
steering, it utilizes a geographically distributed interactive back-end visualization system, 
and it is amenable to an automated backfill mechanism.  Currently, we run SnB on the 
ACDC-Grid from either a GUI or Web portal. 
 
 
Summary.  The Grid is a rapidly emerging and expanding technology that allows 
geographically distributed and independently operated resources (CPU cycles, data 
storage, sensors, visualization devices, and a wide variety of Internet-ready instruments) 
to be linked together in a transparent fashion.  SnB is a computer program based on the 
Shake-and-Bake method of molecular structure determination from X-ray diffraction 
data. The Shake-and-Bake algorithm for molecular structure determination was listed on 
the IEEE poster “Top Algorithms of the 20th Century.”  In this chapter, we have 
discussed the development of tools that allow for an efficient grid-based implementation 
of SnB that is extensible to a wide range of scientific programs. 
 
We introduced the ACDC-Grid, which provides an integrated computational and data 
grid, lightweight job monitoring, predictive scheduling, and opportunities for improved 
Grid utilization through an elegant backfill facility.  The core infrastructure for the 
ACDC-Grid includes the installation of standard grid middleware, the deployment of an 
active Web portal for deploying applications, dynamic resource allocation so that clusters 
and networks of workstations can be scheduled to provide resources on demand, a 
scalable and dynamic scheduling system, and a dynamic firewall, to name a few. 
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