
Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 1 -

Molecular Structure Determination on a Computational
and Data Grid

Russ Miller & Mark L. Green
Department of Computer Science and Engineering

Center for Computational Research
9 Norton Hall

State University of New York
Buffalo, NY 14260

Abstract: The focus of this chapter is on the design and implementation of a critical
computer program in structural biology onto two computational and data grids. The first
is the Buffalo-based ACDC grid, which uses facilities at SUNY-Buffalo and several
research institutions in the greater Buffalo area. The second is Grid2003, an
international grid established late in 2003 primarily for physics and astronomy
applications. We present an overview of the ACDC Grid and Grid2003, focusing on the
implementation of several new tools that we have developed for the integration of
computational and data grids, lightweight job monitoring, predictive scheduling, and
opportunities for improved Grid utilization through an elegant backfill facility. A new
computational framework is developed for the evolutionary determination an efficient
implementation of an algorithm to determine molecular crystal structures using the
Shake-and-Bake methodology. Finally, the grid-enabled data mining approach that we
introduce is able to exploit computational cycles that would otherwise go unused.

Introduction. The Grid is a rapidly emerging and expanding technology that allows
geographically distributed and independently operated resources (CPU cycles, data
storage, sensors, visualization devices, and a wide variety of Internet-ready instruments)
to be linked together in a transparent fashion [1-3]. The power of the Grid lies not only
in the aggregate computing power, data storage, and network bandwidth that can readily
be brought to bear on a particular problem, but on its ease of use.

Grids are now a viable solution to certain computationally- and data- intensive computing
problems for reasons that include the following.

1. The Internet is reasonably mature and able to serve as fundamental
infrastructure for network-based computing.

2. Network bandwidth, which is doubling approximately every 12 months, has
increased to the point of being able to provide efficient and reliable services.

3. Motivated by the fact that digital data is doubling approximately every 9
months, storage capacity has now reached commodity levels, where one can
purchase a terabyte of disk for roughly the same price as a high-end PC.

4. Many instruments are Internet-aware.
5. Clusters, supercomputers, storage and visualization devices are becoming

more mainstream.
6. Major applications, including critical scientific community codes, have been

parallelized in order to increase their performance (faster turnaround time) and
capabilities (handle larger data sets or provide finer resolution models).

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 2 -

7. Driven by the fact that science is a collaborative activity, often involving
groups that are not co- located, collaborative environments (i.e.,
collaboratories) are moving out of the alpha phase of development and into at
least beta testing.

For these and other reasons, grids are starting to move out of the research laboratory and
into early-adopter production systems. The focus of grid deployment continues to be on
the difficult issue of developing high quality middleware.

Grids have recently moved from academic settings to corporate thrusts. Numerous grid
projects have been initiated (GriPhyN, PPDG, EU DataGrid, NASA’s Information Power
Grid, TeraGrid, Open Science Grid, and iVDGL, to name a few). However, the
construction of a real general-purpose grid is in its infancy since a true grid requires
coordinated resource sharing and problem solving in a dynamic, multi- institutional
scenario using standard, open, general-purpose protocols and interfaces that deliver a
high quality of service.

Many types of computational tasks are naturally suited to grid environments, including
data-intensive applications. Grid-based research and development activities have
generally focused on applications where data is stored in files. However, in many
scientific and commercial domains, database management systems play a central role in
data storage, access, organization, and authorization for numerous applications. Part of
our research effort is targeted at enabling systems that are more accessible within a grid
framework.

As Grid computing initiatives move forward, issues of interoperability, security,
performance, management, and privacy need to be carefully considered. In fact, security
is concerned with various issues relating to authentication in order to insure application
and data integrity. Grid initiatives are also generating best practice scheduling and
resource management documents, protocols, and API specifications to enable
interoperability. Several layers of security, data encryption, and certificate authorities
already exist in grid-enabling toolkits such as Globus Toolkit 3 [4].

Molecular Structure Determination. SnB [5-7] is a computer program based on the
Shake-and-Bake [8-9] method of molecular structure determination from X-ray
diffraction data. It is the program of choice for solving such structures in many of the
hundreds of laboratories that have acquired it. This computationally intensive procedure
is ideally suited to an implementation on a computational and data grid. Such an
implementation of SnB allows for the processing of a large number of related molecular
trial structures [10].

The Shake-and-Bake algorithm for molecular structure determination was listed on the
IEEE poster “Top Algorithms of the 20th Century.” The SnB program uses a dual-space
direct-methods procedure for determining crystal structures from X-ray diffraction data.
This program has been used in a routine fashion to solve difficult atomic resolution
structures, containing as many as 1000 unique non-Hydrogen atoms, which could not be

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 3 -

solved by traditional reciprocal-space routines. Recently, the focus of the Shake-and-
Bake research team has been on the application of SnB to solve heavy-atom and
anomalous-scattering substructures of much larger proteins, provided that 3-4Å
diffraction data can be measured. In fact, while direct methods had been applied
successfully to substructures containing on the order of a dozen selenium sites, SnB has
been used to determine as many as 180 selenium sites. Such solutions have led to the
determination of complete structures containing hundreds of thousands of atoms.

The Shake-and-Bake procedure consists of generating structure invariants and
coordinates for random-atom trial structures. Each such trial structure is subjected to a
cyclical automated procedure that includes computing a Fourier Transform to determine
phase values from the proposed set of atoms (initially random), determining a figure-of-
merit [11] associated with these phases, refining the phases to locally optimize the figure-
of-merit, computing a Fourier Transform to produce an electron density map, and
employing a peak-picking routine to examine the map and find the maxima. These peaks
(maxima) are then considered to be atoms, and the cyclical process is repeated for a
predetermined (by the user) number of cycles.

The running time of SnB varies widely as a function of the size of the structure, the
quality of the data, the space group, and choices of critical input parameters, including
the size of the Fourier grid, the number of reflections, the number and type of invariants,
and the number of cycles of the procedure used per trial structure, to name a few.
Therefore, the running time of the procedure can range from seconds or minutes on a PC
to weeks or months on a supercomputer. Trial structures are continually and
simultaneously processed, with the final figure-of-merit values of all structures stored in
a file. The user can review a dynamic histogram during the processing of the trials in
order to determine whether or not a solution is likely present in the set of completed trial
structures.

SnB has recently been augmented with a data repository that stores information for every
application of SnB, regardless of where the job is run. The information is sent to the
repository directly from SnB in a transparent fashion. This information is then mined in
an automated fashion in order to optimize 17 key SnB parameters in an effort to optimize
the procedure for solving previously unknown structures, as discussed later in this
chapter.

SnB has also been augmented with a 3D geographically distributed visualization tool so
that investigators at geographically distributed locations can collaborate in an interactive
fashion on a proposed molecular solution. Further, the tool is being generalized to handle
standard formats.

Grid Computing in Buffalo. The Advanced Computational Data Center Grid (ACDC-
Grid) [10,12-14], which spans organizations throughout Western New York, is a
heterogeneous grid initially designed to support SnB. ACDC-Grid is part of Grid3+, the
IBM NE BioGrid, and serves as the cornerstone for our proposed WNY-Grid. ACDC-
Grid incorporates an integrated computational and data grid, lightweight job monitoring,

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 4 -

predictive scheduling, and opportunities for improved Grid utilization through an elegant
backfill facility. The following projects and packages deliver unique and complementary
components that allow for the systematic expansion of the ACDC-Grid.

• Globus Toolkit 3 [15] provides APIs and tools using the Java SDK to simplify
the development of OGSI-compliant services and clients. It supplies database
services and MDS index services implemented in Java, GRAM [16] service
implemented in C with a Java wrapper, GridFTP [17] services implemented in C,
and a full set of Globus Toolkit 2 components based on version 2.4. The Globus
Toolkit 3 Java provides C bindings for application development and integration
with the existing grid application base. The recently proposed Web Service-
Resource Framework (WS-RF) provides the concepts and interfaces developed
by the OGSI specification exploiting the Web services architecture [18-21]. These
specifications enable define the conventions for managing state so that
applications discover, inspect, and interact with stateful resources in standard and
interoperable ways [22-23].

• The Python Globus (pyGlobus) project [24-26] generated a Python object-
oriented interface to the Globus Toolkit versions 2.2.4 and 2.4. This provides
high- level scripting language access to the entire Globus toolkit with similar
performance to the underlying Globus Toolkit. Integration with Python offers
high-performance scientific computing access to Numerical Python [27],
Scientific Python [28], the netCDF library [29], Message Passing Interface (MPI)
[30], Bulk Synchronous Parallel programming (BSPlib) [31-32], and the SciPy
library [33]. The pyGridWare project [34] provides a migration path for the
pyGlobus users that need a pure Python implementation for developing automated
client side tooling to interact with Globus Toolkit 3 implementation of OGSI.
Whereas, Perl provides several different Web services implementations [35]
based on SOAP and XML-RPC. The OGSI standard uses SOAP, where the best
Perl module for SOAP support is SOAP::Lite [36]. The OGSI::Lite [37] package
is a container for grid services that facilitates writing services in the Perl scripting
language. Exporting a Perl class as a grid service can inherit the required standard
OGSI classes and communicate using the SOAP::Lite package. These packages
add tremendous flexibility to the ACDC-Grid enterprise grid service development
effort.

• Microsoft’s .NET technology for supplying Grid Services [38-39] to the UK e-
Science community is projected to result from a collaboration between Microsoft
[40] and National e-Science Centre (NeSC) [41]. The project objectives include
developing an implementation of OGSI using .NET technologies and developing
a suite of Grid Service demonstrators that can be deployed under this .NET OGSI
implementation. The University of Virginia Grid Computing Group is developing
OGSI.NET that provides a container framework for the .NET/Windows grid-
computing world [42]. This project can bridge the gap between OGSI compliant
frameworks that primarily run on Unix based systems to inter-operability with
Windows based platforms within the ACDC-Grid.

• OptimalGrid is middleware released by IBM that aims to simplify the creation
and management of large-scale connected, parallel grid applications [43].
OptimalGrid manages problem partitioning, problem piece deployment, runtime

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 5 -

management, dynamic level of parallelism, dynamic load balancing, and system
fault tolerance and recovery. The SETI@home project [44] and the
Folding@home protein-folding project [45] are examples of applications, similar
in granularity to applications discussed herein, that can utilize the OptimalGrid
infrastructure. These applications work in a simple “scatter/gather” mode and
have no requirement for communication between the grid nodes participating in
the computation.

The ACDC-Grid has been developed with critical grid components that allow for the
deployment of a general-purpose regional enterprise grid residing over generally
available IP networks. The Shake-and-Bake method of molecular structure
determination, as instantiated in SnB, has been used as the prototype application in the
development of our general-purpose grid. There are many reasons why SnB was chosen,
including the fact that it is an important scientific code, it is widely distributed, both
Shake-and-Bake and SnB were developed in Buffalo by members of the Hauptman-
Woodward Medical Research Institute and the State University of New York at Buffalo,
and that one of the co-developers of Shake-and-Bake and SnB is a member of the
leadership team of the ACDC-Grid, which means that we have access to the knowledge
base associated with SnB as well as all of its internals.

To date, the result of our general-purpose grid effort has been the successful deployment
of a campus grid involving a variety of independent organizations throughout SUNY-
Buffalo and a Western New York Grid (WNY-Grid), which provides a seamless and
transparent mode of operation for grid users in the greater Buffalo region. The WNY-
Grid also provides a unique framework for education, outreach, and training of grid
technology and its application in the Western New York region. Finally, it should be
noted that we are in the process of widening the reach of WNY-Grid in order to develop a
New York State Grid (NYS-Grid). While the NYS-Grid is in its infancy, we have
already secured commitments for participation by a variety of institutions in Western
New York, the Southern Tier, Upstate New York, and New York City. Some of these
nodes will be brought on- line in early 2005.

Center for Computational Research (CCR). The majority of the work presented in
this chapter was performed at the Center for Computational Research, SUNY-Buffalo.
The Center maintains a wide variety of resources that were used during various phases of
the ACDC-Grid implementation, including the following.

1. Compute Systems. A 3TF peak Dell Pentium4 system with Myrinet; A 6TF peak
Dell PentiumIII system with fast Ethernet; A 3TF IBM Blade Server; A 64
processor SGI Origin 3800; A 64 processor SGI Origin 3700 (Altix); A SUN
cluster with Myrinet; An IBM SP; An 18 node Dell P4 visualization cluster; A
heterogeneous bioinformatics system; Several SGI Onyx systems; Networks of
workstations.

2. Storage Systems. A 40TB RAID5 HP SAN system with 190TB of backup tape
front-ended by 64 Alpha processors that is directly connected to CCR’s high-end
compute platforms; Several NAS systems, some of which are targeted at CCR’s
Condor flocks.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 6 -

3. Visualization Systems: An 11'×8' Tiled Display Wall with 20 projectors; A
FakeSpace ImmersaDesk R2; An SGI Reality Center 3300W; Several Access
Grid Nodes; Miscellaneous PC-based visualization systems.

4. Networking. SUNY-Buffalo is an Internet2 member and a participant in the
Abeline network. CCR is directly connected to Internet2.

ACDC-Grid Overview. The development of the heterogeneous ACDC-Grid
infrastructure has flourished recently with fund ing from an NSF/ITR. A variety of
applications are available on ACDC-Grid, as are a variety of critical tools that we have
developed. An overview of the ACDC-Grid effort follows.

1. Grid Core Infrastructure. The core infrastructure for the ACDC-Grid includes the
installation of standard grid middleware, the deployment of an active Web portal
for deploying applications, dynamic resource allocation so that clusters and
networks of workstations can be scheduled to provide resources on demand, a
scalable and dynamic scheduling system, and a dynamic firewall, to name a few.

2. Grid Monitoring, Scheduling, and Mining. The ACDC-Grid provides an efficient
and lightweight grid monitoring system, a sophisticated predictive job scheduler
that integrates past performance of users with the knowledge of availability of
compute resources and knowledge of the location of the requisite data, a backfill
mechanism that allows the ACDC-Grid to maximize utilization while minimizing
interference with job scheduling, and a grid-enabled mechanism for data mining.

3. Data Grid and Storage Services. The ACDC-Grid Data Grid has been developed
from the ground up to transparently integrate with the ACDC-Grid Computational
Grid and provide the user with a representation of their data that hides critical
details, such as location, making the Grid appear as a single entity to the user.
That is, from the user’s point of view, they have access to their data and
computational resources upon which to process their data. However, the user
does not need to know the location of the data or computational resources. This
development included the design, analysis, and implementation of a data grid
scenario manager and simulator. The Data Grid is able to utilize historical
information in order to migrate data to locations that are most efficient for its
analysis.

4. Applications and Collaborations. The SUNY-Buffalo Grid Team has been
working closely with a number of highly-visible grids, including the International
Virtual Data Grid Laboratory, Grid3+ and its technical workgroups, Open Science
Grid and its technical workgroups, the Northeast Bio-Grid, MCEER, NEES, NSF
funded educational grid projects at SUNY-Buffalo, the NSF/NIH supported Grid-
enabled Shake-and-Bake package, transport modeling to support algal bloom
tracking for event monitoring and response management, evolutionary aseismic
design & retrofit (EADR), and OSTRICH, a general purpose software tool for
parameter optimization.

Monitoring. An effective and efficient grid monitoring system was developed during the
early stages of the prototype ACDC-Grid. This monitoring system was critical to the grid
development group and proved useful to early application adopters. The ACDC-Grid
monitoring system exploits the development of robust database servers. The monitoring

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 7 -

system utilizes a MySQL database server, which can maintain millions of records and
hundreds of simultaneous connections in a fast and stable manner. In fact, the ACDC-
Grid monitoring system currently contains statistics for over 300,000 computational jobs
completed on CCR’s heterogeneous compute platforms and over 1,600,000 jobs
completed on the Grid3 multi- institutional computational resources. The ACDC-Grid
monitoring infrastructure has proven to be robust and scalable, but lacks the necessary
service-based tooling to be incorporated into a large general-purpose grid infrastructure.
Therefore, our current efforts are targeted at a second-generation monitoring service that
is more tightly integrated and configured with the unique computational resource it
monitors. We believe that this second generation system will provide an order of
magnitude more scalability, from tens of thousand to hundreds of thousand of servers.

The current ACDC-Grid monitoring system includes the following features.

1. Running/Queued Jobs. The ACDC-Grid monitoring system provides summary
and statistics of currently running or queued jobs on Grid3. Summary charts are
compiled based on total jobs, CPU hours, or runtime for either a user or group
(i.e., virtual organization (VO)) over an individual resource, subset of resources,
or the entire grid. Each interactive chart provides the ability to display detailed
job information.

2. Job History. The ACDC-Grid monitoring system provides detailed historical job
information including CPU consumption rates and job production rates for either
an individual user or a group over a subset of grid resources. To date, ~1,600,000
jobs that have run on Grid3 since October 2003. Summary charts are compiled
from usage data based on user jobs or VOs for a given range of dates over a given
set of resources. Statistics such as total jobs, average runtime, total CPU time
consumed, and so forth, are dynamically produced from the available database.
Each interactive chart allows for detailed information to be displayed.

3. ACDC Site Status. The ACDC-Grid monitoring system generates dynamic ACDC
site status logs, reporting successful monitoring events as well as specific Grid3
site errors corresponding to monitoring event failures.

Scheduling. The ACDC-Grid predictive scheduler uses a database of historical jobs to
profile the usage of a given resource on a user, group, or account basis [46-54].
Determining accurate quality of service estimates for grid-enabled applications can be
defined in terms of a combination of historical and runtime user parameters in addition to
specific resource information. Such a methodology is incorporated into the ACDC-Grid
Portal, which continually refines the predictive scheduler parameters based, in part, on
the data stored by the monitoring system.

Workload also plays a significant role in determining resource utilization. The native
queue schedulers typically use the designated job wall-time for managing resource
backfill (i.e., small pockets of unutilized resources that are being held for a scheduled
job). However, such systems may also use a weighted combination of node, process, and
wall-time to determine a base priority for each job and subsequently modify this priority

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 8 -

in order to impose a fair share resource policy based on historical usage. The backfill
system will allow a job with lower priority to overtake a job with higher priority if it does
not delay the start of the prioritized job. The ACDC-Grid predictive scheduler uses
historical information to better profile grid users and more accurately determine
execution times. Our prototype predictive scheduling system is based on statistical
principles [55] that allow jobs to more effectively run in a backfill mode.

We consider the aforementioned shared- and distributed-memory computational
resources at SUNY-Buffalo’s Center for Computational Research (CCR). The ACDC-
Grid Portal executes many grid-enabled scientific applications on several of the Center’s
heterogeneous resources concurrently. Several applications have inter-dependent
execution and data requirements that require reliable knowledge of job start and
completion times.

An explanation of the development of the ACDC-Grid predictive scheduler is best served
by considering a snapshot of the queue for a single computational resource. Table 1
shows 15 running and queued jobs on this resource (Dell P4 cluster with Myrinet) from
six users, which initially completely occupy all processors on all nodes (i.e., all 516
processors on the 258 dual-processor nodes). There are seven running jobs and eight
queued jobs, where the queue job priority determines a relative rank for corresponding to
the order that the queued jobs will start. Note that the user requests the number of nodes,
number of processes, and walltime queue parameters for each of the running and queued
jobs. This is enough information to completely define the job execution and the native
scheduler priority determination.

Table 1. Sample computational resource queue snapshot.

Jobid User Nodes Procs Walltime Status
1 user2 32 64 360 running
2 user1 32 64 360 running
3 user1 32 64 360 running
4 user1 32 64 360 running
5 user1 32 64 360 running
6 user3 64 128 500 running
7 user5 34 68 720 running
8 user4 96 192 720 1
9 user5 64 128 360 2
10 user5 64 128 480 3
11 user5 128 256 720 4
12 user6 128 256 720 5
13 user5 128 256 720 6
14 user6 96 192 306 7
15 user5 64 128 480 8

The native queue scheduler uses the designated job walltime for managing resource
backfill and estimated job start and end times. Table 2 reports the native queue scheduler

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 9 -

estimates for start and end times for all running and queued jobs. The native scheduler
uses a weighted combination of node, process, and walltime to determine a base priority
for each job and subsequently modifies the base priority to impose a fair share resource
policy. The fairshare value is based on historical usage and can be divided into user,
group, and account associated with the job. This scheduling scheme is also based on
advanced walltime reservations with backfill, where a job with lower priority can
overtake a job with higher priority only if it does not delay the start of the prioritized job.
The advanced reservation scheme also makes it possible to allocate resource in the future.

Table 2. Native queue job execution start and end time.

Jobid Walltime Starttime Endtime
1 360 00:05:41 00:11:41
2 360 00:05:41 00:11:41
3 360 00:05:41 00:11:41
4 360 00:05:41 00:11:41
5 360 00:05:41 00:11:41
6 500 00:05:41 00:14:01
7 720 00:07:36 00:19:36
8 720 00:11:41 00:23:41
9 360 00:11:41 00:17:41
10 480 00:14:01 00:22:01
11 720 00:23:41 01:11:41
12 720 00:22:01 01:10:01
13 720 01:11:41 01:23:41
14 306 01:10:01 01:15:07
15 480 01:23:41 02:07:41

The ACDC-Grid predictive scheduler uses a database of historical job executions to
provide an improved profile of the usage of a given resource based on a user, group, or
account basis. Workload also plays a significant role in determining average system
utilization. Users will take advantage of scheduler feedback to determine the type of jobs
that have the best turn around time. The users will submit jobs that give them the best
service, resulting in a dynamic workload that adjusts to provide near-optimal utilization.
Table 3 reports five Genetic Algorithm optimized user profile parameters that were used
to determine a more efficient job execution.

Table 3. ACDC-Grid user profile information.

User Efficiency Node Walltime Job Age
user1 0.568 33 382 61 17
user2 0.421 44 447 60 38
user3 0.650 64 426 19 23
user4 0.717 96 424 16 30
user5 0.612 44 255 138 35

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 10 -

user6 0.691 19 423 138 20

This methodology is incorporated into the ACDC-Grid Portal, where it continually
verifies and evolves the predictive scheduler parameters based on the current
computational grid state. The resulting system delivers a self-adapting job start times
with a factor of 2-3 times more accurate than the native queue systems.

The ACDC-Grid predictive scheduler backfill algorithm was initially designed to be
extensible to a general set of multi-disciplinary applications, though it has only been
deployed for the SnB application environment. The prototype results have been
impressive. Based on predictive analysis, the ACDC-Grid infrastructure determines the
length of time idle processors will be available on all computational resources. For
example, over a 6 month period, the ACDC-Grid predictive scheduler has allowed 3709
heterogeneous jobs to be completed on an average of 21 processors per job with an
average runtime of 7.3 hr consuming a total of 410,000 CPU hrs at the rate of 2250 CPU
hrs/day.

The ACDC-Grid predictive scheduler estimates are used for determining whether or not a
computational grid resource can meet the quality of service requirements defined by the
current workload. If a computational grid resource will not meet the quality of service
expectations required, the ACDC-Grid infrastructure will search for a grid resource that
can meet the expectations and determine whe ther or not it is feasible to migrate the job in
question to a more suitable resource. The overall computational grid resource statistics
are compiled in the ACDC-Grid database and can be queried by grid users and
administrators in order to better understand the “state of the grid”.

Data Grid. The ACDC-Grid enables the transparent migration of data between various
storage element resources while preserving uniform access for the user, where basic file
management functions are provided via a platform-independent Web interface, as shown
in Figure 1.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 11 -

Figure 1. ACDC Data Grid File Manager Web user interface.

We have identified five use cases for the Data Grid file management infrastructure. The
infrastructure architecture description for a general View, Edit, Copy, Upload, and
Download use case are presented in Figures 2a-b, 2c, 2d-e, respectfully.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 12 -

Figure 2a (left) and 2b (right). ACDC Data Grid View and Edit file use case
description.

The View use case copies a designated file from the users’, group, or public accessible
Data Grid to a temporary Grid Portal scratch space and presents the file contents through
the Web interface. The temporary copy of the file stored in the Grid Portal scratch space
is removed after viewing is complete. The Edit use case copies the from the users, group,
or public accessible Data Grid to a temporary Grid Portal scratch space and presents the
file for editing through the Web interface. After successfully editing the file, the original
file is overwritten by the edited file.

Figure 2c. ACDC Data Grid Copy file use case description.

The Copy use case copies a designated file from the users, group, or public accessible
Data Grid to a temporary Grid Portal scratch space and uploads the new file into the Grid
Portal Storage Element. The new file attributes are updated in the ACDC Data Grid
database after a successful upload into the Storage Element.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 13 -

Figure 2d (left) and 2e (right). ACDC Data Grid Upload and Download file use case.

The Upload use case uploads files via the Web interface into a Grid Portal scratch space,
applying the directory and file abstractions, and copying the files to the Grid Portal
Storage Element. The ACDC Data Grid database is updated with the new directory and
file attributes upon successful upload, and the Grid Portal scratch files are deleted. The
Download use case assembles the requested files by querying the ACDC Data Grid
database for individual file and directory locations into the Grid Portal scratch space. A
download container is assembled from the abstracted directory and file attributes
obtained from the database and compressed for download. The compressed container is
then downloaded to the user through the Web interface.

The gathering of statistical information and the display of such information through a
common Web interface are of particular use to developers and administrators. The
metadata information and the corresponding data repository for each file are maintained
in a global MySQL database table. Algorithms have been implemented to periodically
migrate files between repositories in order to optimize usage of resources based on the
users’ utilization profile. This leads to localization of data files for the computational
resources that require them. Conversely, the Chimera Virtual Data System (VDS), which
combines a virtual data catalog for representing data derivation procedures and derived
data, is used by GriPhyN high-energy physics collaborators [56]. We plan to integrate the
Chimera system into the general-purpose ACDC-Grid infrastructure with distributed
“Data Grid” services in order to enable on-demand execution of computation schedules
constructed from database queries. In addition, this system will provide a catalog that can
be used by application environments to describe a set of application programs, and then
track all the data files produced by executing those applications.

Storage Resource Managers (SRMs) [57] are middleware components that provide
dynamic space allocation and file management on shared storage components of a grid

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 14 -

[58]. SRMs support protocol negotiation and a reliable replication mechanism. The SRM
specification standardizes the interface, thus allowing for a uniform access to
heterogeneous storage elements [59-62]. The SRM standard allows independent
institutions to implement their own SRMs. SRMs provide a flexible policy decision
specification process that can be made independently by each implementation for all grid-
enabled resources. Furthermore, the tight integration of the computational grid predictive
scheduler with the data grid network bandwidth availability statistics is essential for
scheduling data migrations for computational jobs. The ACDC-Grid incorporates the
Network Weather Service [63] bandwidth and latency information obtained from the
computational and data resources into the predictive scheduler algorithms for job staging
and execution requirements. Unfortunately, this information is insufficient for
determining network bandwidth availability or forecasting essential network statistics. To
address this issue, we have deployed software throughout the existing IP networking
infrastructure that can be exploited for the development of network forecasting grid
services for the ACDC-Grid. This software utilizes the port level network statistics
obtained from switches and routers distributed throughout the SUNY-Buffalo network
fabric and builds a database for data mining this valuable information. We propose
coupling the network information services, predictive scheduler service, and a data grid
migration forecasting services into a tool that will achieve improved network and
computational resource utilization.

Dynamic Integration of Resources. The ACDC-Grid introduced the concept of
dynamic resource allocation during the GRID3 intensive application period during
Supercomputing 2003 and Supercomputing 2004. The amount of computational
resources provided to the GRID3 user base was dynamically rolled into and out of
production on a daily basis. As a proof of concept, for a two-week period, 400 processors
of a 600 processor Pentium4 cluster were rolled out of the local CCR pool of resources
and into the GRID3 production pool at 8:00 AM, with the inverse procedure taking place
at 8:00 PM. The production jobs running on dynamically shared resources were managed
through the advanced reservation capabilities of the queuing system [64], thus requiring
no administrator intervention in managing the job start or completion. These resources,
unlike a similar concept used in Condor flocking, were queue managed and reconfigured
on the fly with enhanced grid node security, nfs mounted filesystems, grid user accounts
and passwords, grid-enabled software infrastructure, and so forth, and were ready to
accept production jobs without system administrator intervention. We are working to
extend this automated ACDC-Grid infrastructure to provide on-demand computational
resources from multiple IT domain-managed clusters that can be configured by the
respective administrators using a grid service.

Grid Research Collaborations. The ACDC-Grid exploits a grid-enabling template
framework that includes a dynamically created HTML grid console for the detailed
monitoring of computational grid jobs. Results from previous studies have been used in
the design of the Globus-based ACDC-Grid that serves researchers at the Center for
Computational Research and the Hauptman-Woodward Medical Research Institute,
located in Buffalo, NY. In particular, the extensive framework of HTML, JavaScript,
PHP, MySQL, phpMyAdmin, and the Globus Toolkit provide a production-level ACDC-

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 15 -

Grid for scientific applications and data integration as required by the applications
community. The rapid expansion of the Grid community has facilitated the ACDC-Grid
collaboration with many high quality laboratories and testbeds for developing robust and
scalable grid infrastructure. The ACDC-Grid has been hardened using grid research
collaboration memberships and participation over the past several years.

Grid3. The ACDC-Grid membership in the international Virtual Data Grid Laboratory
(iVDGL) provides access to international heterogeneous computing and storage resources
for the purpose of experimentation in grid-enabled data-intensive scientific computing.
The ACDC-Grid team participates in the (i) iVDGL iGOC, which is used as the central
coordination point for grid technical problem resolution, (ii) grid monitoring technical
working group, and (iii) grid troubleshooting working group. The iVDGL and other U.S.
Grid projects have sponsored several Data Grid activities, including the Grid3
collaboration that has deployed an international Data Grid with participation from more
than 28 sites across the United States (including the ACDC-Grid site) and Korea. This
facility is operated by the U.S. Grid projects iVDGL, Grid Physics Network (GriPhyN)
and the Particle Physics Data Grid (PPDG), and the U.S. participants in the LHC
experiments ATLAS and CMS. The Grid3 collaboration uses the Virtual Data Toolkit
(VDT) [65] for providing the Grid cyberinfrastructure for the scientific and computer
science applications from a variety of disciplines including physics, astrophysics,
biology, and astronomy.

The ACDC-Grid Virtual Organization provides computationa l resources, expertise, users,
applications, and core grid job monitoring services for the Grid3 collaboration. The Grid3
resources are used by 7 different scientific applications, including 3 high-energy physics
simulations and 4 data analyses in high-energy physics, structural biology (Shake-and-
Bake), astrophysics, and astronomy. The ACDC-Grid resources processed over 175,000
computational jobs submitted by all of the scientific applications since October, 2003,
accounting for over 25% of the total computational jobs processed by the Grid3
resources. The ACDC-Grid resources continue to process computational jobs and provide
critical computational job monitoring for the Grid3 collaboration members (ACDC Job
Monitoring for Grid3 is at http://acdc.ccr.buffalo.edu).

The International Virtual Data Grid Laboratory (iVDGL) is a global Data Grid that
provides resources for experiments in physics and astronomy [66]. Its computing,
storage, and networking resources in the U.S., Europe, Asia, and South America provide
a unique computational laboratory that will test and validate Grid technologies at
international and global scales. The Grid2003 project [67] was defined and planned by
Stakeholder representatives in an effort to align iVDGL project goals with the
computational projects associated with the Large Hadron Collider (LHC) experiments.
See Figure 3.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 16 -

Figure 3. Grid2003 project Web page site catalog and status.

The Grid Laboratory Uniform Environment (GLUE) [68] collaboration was created in
Feb. 2002 to provide a focused effort to achieve interoperability between the U.S. physics
Grid projects and the European projects. Participant U.S. projects include iVDGL, Grid
Physics Network (GriPhyN) [69], and Particle Physics Data Grid (PPDG) [70].
Participant European projects include the European Data Grid (EDG) Project [71], Data
Transatlantic Grid (DataTAG) [72], and CrossGrid [73]. Since the initial proposal for the
GLUE project, the LHC Computing Grid (LCG) project was created at CERN [74] to
coordinate the computing and Grid software requirements for the four LHC experiments,
with a goal of developing common solutions. One of the main project goals is deploying
and supporting global production Grids for the LHC experiments, which resulted in the
Grid2003 “production” grid.

Goals of the Grid2003 Project

The iVDGL Steering Committee set the following broad goals for the Grid2003 project.
• Provide the next phase of the iVDGL Laboratory.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 17 -

• Provide the infrastructure and services needed to demonstrate LHC production and
analysis applications running at scale in a common grid environment.

• Provide a platform for computer science technology demonstrators.

The goals of this project included meeting a set of performance targets, using metrics
listed in a planning document. The central project milestone can be summarized as
delivery of a shared, multi-Virtual Organization (VO), multi-application, grid laboratory
in which performance targets were pursued through deployment and execution of
application demonstrations during the period before, during, and after the SC2003
conference in Phoenix (November 16-19). The organization of this project included the
creation of teams representing application groups, site administrators, middleware
developers, core service providers, and operations. The active period of this project was a
5-month period from July through November 2003. It is interesting to note that
subsequent to this period, Grid3 remains largely intact, with many applications running.

The Grid2003 Project deployed, integrated and operated Grid3 with 27 operational
processing sites comprising at peak ~2800 CPUs for more than 3 weeks. Progress was
made in other areas that are important to the iVDGL mission.

• Multiple VO grid. Six different virtual organizations participated and
successfully deployed 10 applications. All applications were able to run on sites
that were not owned by the host organization. Further, the applications were all
able to run on non-dedicated resources.

• Multi-disciplinary grid. During the project, two new applications, the SnB
structural biology application and an application in chemical informatics, were run
across Grid3. The fact that these could be installed and run on a Grid infrastructure
designed and installed for Particle and Astrophysics Experiments provides the
members of iVDGL with confidence that this grid can be adapted to other
applications as needed.

• Use of shared resources. Many of the resources brought into the Grid3
environment were leveraged facilities in use by other VO’s.

• Dynamic resource allocation. In addition to resources that were committed 24×7,
the Computational Research (CCR) configured their local schedulers to bring
addit ional resources in to and out of Grid3 on a daily basis, satisfying local
requirements and Grid3 users.

• International connectivity. One site was located abroad (Kyunpook National
University, Korea).

Over the course of several weeks surrounding SC2003, the Grid2003 project met its
target goals.

1. Number of CPUS. With a target of 400 CPUs, Grid2003 successfully incorporated

2163 processors. More than 60% of available CPU resources are non-dedicated
facilities. The Grid3 environment effectively shared resources not directly owned by
the participating experiments.

2. Number of Users . With a target of 10 users, Grid2003 successfully supported 102
users. About 10% of the users are application administrators who do the majority of

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 18 -

the job submissions. However, more than 102 users are authorized to use the
resources through their respective VO’S services.

3. Number of Applications . With a target of at least 4 physics applications, Grid2003
successfully supported 10 applications, including at least one from each of the five
GriPhyN-iVDGL-PPDG participating experiments, the SnB program from structural
biology, and GADU/Gnare genome analysis. Note that these applications continue to
run on Grid3.

4. Number of sites running Concurrent Applications . With a target of at least 10
concurrent applications, Grid2003 supported 17 concurrent applications. This
number is related to the number of Computational Service sites defined on the catalog
page and varies with the application.

5. Data Transfers Per Day. With a target of 2-3 TB of data transfer daily, Grid2003
achieved a 4 TB/day transfer rate. This metric was met with the aid of the GridFTP-
demo.

6. Percentage of Resources Used. With a target of utilizing 90% of the resources,
Grid2003 was only able to achieve 40-70% of the resources.

7. Peak Number of Concurrent Jobs . With a peak target of 1000 concurrent jobs,
Grid2003 was able to support 1100 concurrent jobs. On November 20, 2003 there
were sustained periods when over 1100 jobs ran simultaneously.

IBM NE BioGrid. The IBM Northeast Bio-Grid (IBM NE BioGrid) collaboration
includes IBM, MIT, Harvard, and the ACDC-Grid. It uses the IBM Grid Toolbox V3
[75] that delivers a set of grid services built with Open Grid Services Architecture
(OGSA). OGSA enables the communication across heterogeneous, geographically
dispersed environments in addition the IBM General Purpose File System (GPFS) [76]
and provides a parallel scalable global filesystem that is used for the ACDC-Grid
computational resources. This 4.3TB single filesystem uses 34 servers with 2 hard drives
connected by Myrinet and has provided grid-enabled I/O intensive scientific applications
bandwidth in excess of 1,800 MB/sec. The IBM NE BioGrid and the Grid3 collaboration
use very different Grid cyberinfrastructure middleware for grid-enabled resource
communication and computational job executions.

HP GridLite. The ACDC-Grid collaboration with HP on GridLite provides another Grid
cyberinfrastructure that we believe will provide core infrastructure for the SUNY-Buffalo
ACDC-Campus-Grid that is currently under construction. GridLite will provide a
lightweight infrastructure that can easily be deployed on pocketPCs, laptops, PDAs,
cellular phones, and other portable devices on the campus. Many of these devices are also
being grid-enabled by our NEESgrid [77] collaborators, SUNY-Buffalo’s Structural
Engineering and Earthquake Simulation Laboratory (SEESL) [78], which is the flagship
laboratory in the Multidisciplinary Center for Earthquake Engineering Research
(MCEER) [79], which will be an important node of a nationwide “collaboratory” in the
NSF’s Network for Earthquake Engineering Simulation (NEES). The NEESgrid software
release 3.0 [80] point of presence, tele-presence system, and software integration provide
the ACDC-Grid with grid services and testbeds for hardening the core grid-enabling
instrument and device cyberinfrastructure. The MCEER, NEES, CSEE, and CCR
Collaboration Platform tightly integrates all of the CCR’s common interests and

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 19 -

missions. CCR provides the machine room space to house and maintain a high-powered
dual processor server capable of 1) serving a custom Web site with a Gigabit Ethernet
connection to the University backbone, 2) serving a Web accessible MySQL database, 3)
serving 3D stereo graphics to the SGI 3300W Visualization Display, 4) serving 2D and
3D graphics to the Tiled-Display Wall, 5) serving streaming video to the Access Grid for
world-wide presentation, 6) staging and post-processing platform for CCR’s
Computational Grid (ACDC-Grid) analysis and results, 7) providing a common platform
for exchange of information and visualization, and 8) fostering collaborations with other
University departments.

Open Science Grid. The ACDC-Grid is a founding participant of the Open Science Grid
(OSG), a cooperative venture that brings together laboratory and university facilities, grid
technology providers, and the application communities, for the purpose of engineering
and building a common Grid infrastructure that will ensure the necessary robust,
persistent, computational, and data services needed by laboratories, experiments, and
application managers. The OSG provides a framework for coordinating activities with the
goal of enabling a common grid infrastructure and shared resources for the benefit of
scientific applications. The ACDC-Grid team participate in the a) OSG Security Incident
Handling Activity, b) OSG Storage Services Activity, c) OSG-0 Activity, and d) the OSG
Blueprint Activity [81]. In accordance with the magnified risk and the circumscribed
communities, the Security Incident Handling activity group (SIHag) was established with
the goal to reduce risk through the establishment of guidelines, policies, and methods for
security incident handling within the OSG and iVDGL communities.

Grid Research Advancements. Several distributed monitoring systems have been
designed to track the status of large networked systems. Some of these systems are
centralized, where the data is collected and analyzed at a single central host, while others
use a distributed storage and query model. Ganglia [82-83] uses a hierarchical system,
where the attributes are replicated within clusters using multicast and then cluster
aggregates are further aggregated along a single tree. Sophia [84-85] is a distributed
monitoring system, currently deployed on Planet-Lab [86], and is based on a declarative
logic-programming model, where the location of query execution is both explicit in the
language and can be calculated during the course of evaluation. TAG [87] collects
information from a large number of sensors along a single tree. IBM Tivoli Monitoring
[88] also provides the foundation for additional automated Best Practices via Proactive
Analysis Components (PACs) for managing business critical hardware and software
including middleware, applications, and databases. A number of existing grid information
systems such as MDS2 [89-90], GIS [91], R-GMA [92-93], and Hawkeye [94] each
provide a core distributed information management system designed to support a range of
applications and services such as scheduling, replica selection, service discovery, and
system monitoring. All of these systems use a client-server model in which Information
Providers collect or generate data and supply this data to Information Services. We
currently work with the Globus Global Information Service (GIS) and the Monitoring and
Discovery Service (MDS) working groups through our Grid3 and OSG collaborations.
The ACDC-Grid Monitoring and Information Services – Core Infrastructure (MIS-CI)
deployed on our grid-enabled resources has been developed through this collaboration, as

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 20 -

shown in Figure 4. The MIS-CI is architected to be a lightweight non- intrusive
monitoring and information service that can be throttled by the Resource Provider in a
dynamic fashion. The MIS-CI is self-monitoring, secure, and hierarchical in design
making it extremely scalable with tuneable information time scales.

Figure 4. ACDC-Grid Monitoring and Information Services – Core Infrastructure
architecture description.

Our monitoring system is being enhanced to

1. provide a programmatic interface to the ACDC Job Monitoring database for
running, queued, or historical jobs, complete with the current site status metrics,

2. provide integration with MonaLisa [95] and the Grid3 site status catalogue for
defining difference metrics on job monitoring, resource utilization, and policy
metrics,

3. provide integration with the Globus MDS provider development team for
providing XML formatted job information and site status metrics,

4. provide integration of our predictive scheduling estimates based on resource
policy specifications,

5. provide resource specific CPU availability for Grid3 resources, ACDC-Grid
resources, and Virtual Organizations,

6. provide currently available free nodes and predictive scheduling capabilities of
job execution start times based on running, queued, and submitted job
characteristics, including site policy constraints,

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 21 -

7. provide data grid historical and near real- time estimates of bandwidth and
utilization of grid-enabled repositories, and

8. harden the secure, lightweight, scalable distributed hierarchical imbedded
MySQL database ACDC-Grid monitoring daemon infrastructure for
heterogeneous computational grid hardware resources and heterogeneous grid
infrastructure middleware.

This enhanced and hardened service can then be utilized by several other open source
applications and included in the Globus, NMI [96-97], and VDT software suites for
production grid monitoring efforts.

Grid Research Application Abstractions and Tools. The Grid-enabling Application
Templates (GATs) used for porting scientific and engineering applications to the ACDC-
Grid use abstraction as the process of combining multiple smaller operations into a single
unit that can be referred to by a stage. Each stage is named and may contain a template
for imposing fine-grained application input file generation, automated parallelization,
intermediate result file monitoring, exception handling, and overall application
performance metrics. Using the ACDC-Grid GAT abstraction allows programmers to
solve problems at a high level, while deferring non-critical details. This has proved to be
an effective problem solving strategy in porting codes from structural biology, earthquake
engineering, and the environmental and hydrodynamic domains to the ACDC-Grid
infrastructure. The application developers have the ability to drill down into each stage or
split stages into logical units for their specific application. For example the Shake-and-
Bake application uses seven stages in defining a computational and data grid job: 1)
Software, 2) Template, 3) General Information, 4) Data Preparation, 5) Job Definition, 6)
Review, and 7) Execution Scenario. This GAT defines the grid-enabled software
application; required and/or optional data files from the ACDC Data Grid; computational
requirements are input or a template defined computational requirement runtime estimate
is selected; application specific runtime parameters or default template parameter
definitions are used; the grid user accepts the template complete job definition workflow
or corrects any part of job definition; and the grid user has the ability to input an
execution scenario or select a ACDC-Grid determined template defined execution
scenario. After these stages have been completed the grid user can view specific grid job
completion status, grid job current state, detailed information on all running or queued
grid jobs, grid-enabled application specific intermediate and post processing grid job
graphics, as well as plots and tables. Figure 5 describes a typical ACDC-Grid GATs
workflow definition and execution. The current GAT workflow is robust enough to
handle quite complicated definitions that integrate intermediate job status and statistics
on a dynamic basis. The GAT API is used extensively for integration the ACDC
Computational Grid with the ACDC Data Grid in a seamless fashion.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 22 -

Figure 5. ACDC-Grid Grid-enabling Application Template definition and execution
description.

Leveraging our experience with Grid3 and OSG, it is evident that the current Grid
security infrastructure is deficient. Specifically, many Grids use a grid-mapfile for
mapping remote users to a single local grid user account. This can lead to several
potential security problems. We are currently developing infrastructure to mitigate these
problems, as shown in Figure 6.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 23 -

Figure 6. ACDC-Grid Proxy+ enhanced grid security infrastructure.

Optimizing SnB on Grids. Genetic Algorithms (GAs) were developed by Holland [98]
and are based on natural selection and population genetics. Traditional optimization
methods focus on developing a solution from a single trial, whereas genetic algorithms
operate with a population of candidate solutions. We have constructed a GA to
determine an efficient set of SnB input parameters in an effort to reduce the time-to-
solution for determining a molecular crystal structure from X-ray diffraction data. We
use a population of candidate SnB input parameters. Each member of the population is
represented as a string in the population and a fitness function is used to assign a fitness
(quality) value for each member. The members in the population obtain their fitness
values by executing the SnB program with the input parameter values represented by their
strings. Using “survival-of-the-fittest” selection, strings from the old population are used
to create a new population based on their fitness values. The member strings selected can
recombine using crossover and/or mutation operators. A crossover operator creates a new
member by exchanging substrings between two candidate members, whereas a mutation
operator randomly modifies a piece of an existing candidate. This procedure of
combining and randomly perturbing member strings has, in many cases, been shown to
produce stronger (i.e., more fit) populations as a function of time (i.e., number of
generations).

We use the Sugal [99] (sequential execution) and PGAPack [100-101] (parallel and
sequential execution) genetic algorithm libraries. The Sugal library provided a sequential

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 24 -

GA and has additional capabilities, including a restart function, which proved to be very
important when determining fitness values for large molecular structures. The PGAPack
library provided a parallel master/slave MPICH/MPI implementation that proved very
efficient on distributed- and shared-memory ACDC-Grid compute platforms. Other key
features include C and Fortran interfaces, binary-, integer-, real-, and character-valued
native data types, object-oriented design, and multiple choices for GA operators and
parameters. In addition, PGAPack is quite extensible. The PGAPack library was
extended to include restart functionality and is currently the only library used for the
ACDC-Grid production work.

The SnB computer program has approximately 100 input parameters, though not all
parameters can be optimized. For the purpose of this study, 17 critical parameters were
identified for participation in the optimization procedure. Eight known molecular
structures were initially used to evaluate the genetic algorithm evolutionary molecular
structure determination framework performance. These structures are 96016c [102],
96064c [103], crambin [104-105], Gramicidin A [106], isoleucinomycin [107], pr435
[108], Triclinic Lysozyme [109], and Triclinic Vancomycin [110].

In order to efficiently utilize the computational resources of the ACDC-Grid, an accurate
estimate must be made in terms of the resource requirements for SnB jobs that are
necessary for the GA optimization. This includes runs with varying parameter sets over
the complete set of eight known structures from our initial database.

This is accomplished as follows. First, a small number of jobs are run in order to
determine the required running time for each of the necessary jobs. Typically, this
consists of running a single trial for each of the jobs in order to predict the time required
for the required number of trials for the job under consideration.

Approximately 25,000 population members were evaluated for the eight known
molecular structures and stored in a MySQL database table, as shown in Figure 7.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 25 -

Figure 7. MySQL database table for SnB trial results.

From these trial results, the mean (
j

X) and standard deviations (js) are calculated for
each input parameter j and used to determine the standard scores (j

iz) for each trial i,

j

jj
ij

i s
XX

z
−

= ,

for all i and j, where the trial parameter value for trial i and parameter j is j
iX . Figure 8

shows the standard scores of the parameters under consideration.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 26 -

Figure 8. Standard scores for Pearson product-moment correlation coefficient
calculations.

The Pearson product-moment correlation coefficients (j

kr) are calculated for input
parameter j and molecular structure k by

1−
= ∑

N

zz
r

runtime
k

j
kj

k ,

for all j and k, where N denotes the degrees of freedom and runtime
kz represents the standard

score of the GA trial run time. Refer to Figure 9.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 27 -

Figure 9. Pearson product-moment correlation coefficient database table.

The input parameters that have the largest absolute magnitude Pearson product-moment
correlation coefficient with respect to the observed trial run times are selected and used to
form a predictive run time function that is fit using a linear least squares routine

jj
kj

runtime
i XraX ∑= ,

where the observed runtime

iX trial run time is fit to a selected sub-set of input parameter

values j, jX denotes the input parameter value, j
kr denotes the respective molecular

structure k Pearson product-moment correlation coefficient, and ja denotes the linear
least square fit coefficients for each j input parameter. We use this function within the
grid-enabled data-mining infrastructure to estimate the maximum number of SnB GA
generations and the maximum size of the population that would run on a given
computational resource within the specified time frame.

The ACDC-Grid infrastructure automatically updates the correlation coefficients based
on the availability of new trial data appearing in the SnB trial result table. Thus, run time
estimates for any given structure continually evolve throughout the GA optimization
process.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 28 -

For example, if there are 50 processors available for 150 minutes on ACDC-Grid
compute platform “A”, we are interested in determining the maximum number of GA
generations and the size of the population that can run on “A” and complete within 150
minutes. Based on this information, the data mining algorithms can make intelligent
choices of not only which structures to evaluate, but they can completely define the SnB
GA job that should be executed. This type of run time prediction is an essential
component of our system for providing a level of quality of service. Further, in our
experience, this type of run time parameter-based prediction is almost always necessary
when queue managed computational resources are employed.

Grid-Enabled Data Mining with SnB. The SnB grid-enabled data mining application
utilizes the ACDC-Grid infrastructure. A typical SnB job uses the Grid Portal to supply
the molecular structures parameter sets to optimize, the data file metadata, the grid-
enabled SnB mode of operation (dedicated or back fill), and the SnB termination criteria.
The Grid Portal then assembles the required SnB application data and supporting files,
execution scripts, database tables, and submits jobs for parameter optimization based on
the current database statistics. ACDC-Grid job management automatically determines the
appropriate execution times, number of trials, number of processors for each available
resource, as well as logging the status of all concurrently executing resource jobs. In
addition, it automatically incorporates the SnB trial results into the molecular structure
database, and initiates post-processing of the updated database for subsequent job
submissions.

The Grid Portal then assembles the required SnB application data and supporting files,
execution scripts, database tables, and submits jobs for parameter optimization based on
the current database statistics. ACDC-Grid job management automatically determines the
appropriate execution times, number of trials, number of processors for each available
resource, as well as logging and status of all concurrently executing resource jobs. In
addition, it automatically incorporates the SnB trial results into the molecular structure
database, and initiates post-processing of the updated database for subsequent job
submissions. Figure 10 shows the logical relationship for the SnB grid-enabled data
mining routine described.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 29 -

Figure 10. ACDC-Grid grid-enabled data mining diagram.

For example, starting September 8, 2003, a backfill data mining SnB job was activated at
the Center for Computational Research using the ACDC-Grid computational and data
grid resources. The ACDC-Grid historical job-monitoring infrastructure is used to obtain
the jobs completed for the period of September 8, 2003 to January 10, 2004, as shown in
Figure 11.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 30 -

Figure 11. ACDC-Grid job monitoring information for all resources and users.

The activated data mining SnB job template is being run by user mlgreen. By hovering
over the bar in the chart, as shown in Figure 12, one can see mlgreen’s job statistics.
Further, notice that 3118 jobs have been completed on the ACDC-Grid resources over
this time period. The ACDC-Grid job monitoring also dynamically reports job statistics
for the data mining jobs. The total number of jobs completed by all users on all resource
is 19,868 where the data mining jobs represent 15.69% of the total. The average number
of processes for a data-mining job was 19.65 and the total number of processors used
over this period was 433,552, where the data mining jobs accounted for 16.85% of the
total. The data mining jobs consumed 291,987 CPU hours, which was 19.54% of the total
CPU hours consumed (1,494,352 CPU hours).

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 31 -

Figure 12. ACDC-Grid job monitoring statistics for user mlgreen.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 32 -

Figure 13. ACDC-Grid job monitoring statistics for user mlgreen.

A subsequent mouse click on the bar chart drills down further describing the jobs
completed by user mlgreen. Here, we see five computational resources that processed the
3118 data mining jobs. The statistics for the Joplin compute platform are shown in Figure
13. Note that all statistics are based only on the jobs completed by the mlgreen user.
There were 869 jobs processed by the Joplin compute platform representing 27.87% of
the 3118 data mining jobs.

Clicking on the bar chart drills down into a full description of all jobs processed by the
Joplin compute platform, as shown in Figure 14. The information presented includes job
ID, username, group name, queue name, node count, processes per node, queue wait
time, wall time used, wall time requested, wall time efficiency, CPU time, physical
memory used, virtual memory used, and job completion time/date.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 33 -

Figure 14. ACDC-Grid job monitoring tabular accounting of completed job
statistics.

The ACDC-Grid data mining backfill mode of operation only uses computational
resources that are currently not scheduled for use by the native queue scheduler. These
resources are commonly called “backfill” as users can run jobs on the associated nodes
without affecting the queued jobs. Many queues and schedulers give this information in
the X number of nodes available for Y amount of time. The ACDC-Grid infrastructure
monitors this information for all of the computational resources and stores this
information in a MySQL database table, as shown in Figure 15.

Figure 15 also shows the number of processors and wall time that are available for each
resource. Note a value of –1 for the available wall time represents an unlimited amount of
time (no currently queued job require the use of these processors). The activated data
mining template can obtain the number of processors and wall time available for a given
compute platform and then check the status of the platform before determining the actual
GA SnB data mining job parameters. See Figure 16.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 34 -

Figure 15. ACDC-Grid backfill information for all resources.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 35 -

Figure 16. ACDC-Grid computational resource status monitor.

Using the Pearson product-moment fit function derived earlier, the new data mining job
run time is estimated based on the current ACDC-Grid SnB molecular structure database
information. The data mining job template is then executed leading to the migration and
submission of the designed data-mining job to the respective ACDC-Grid computational
resource.

The activated data-mining template has two options of stopping criteria, as follows.

1. Continue submitting SnB data mining application jobs until the optimal
parameters have been found based on pre-determined criteria.

2. Continue indefinitely (the data mining template is manually de-activated by the
user when optimal parameters are found).

This illustrative example summarizes the evolutionary molecular structure determination
optimization of the Shake-and-Bake method as instantiated in the SnB computer program.

The ACDC data grid complements the ACDC computational grid in terms of managing
and manipulating these data collections. As discussed, the goal of the ACDC data grid is
to transparently manage data distributed across heterogeneous resources, providing
access via a uniform (Web) interface. In addition, we also enable the transparent

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 36 -

migration of data between various resources while preserving uniform access for the user.
See Figure 17.

Figure 17. ACDC data grid Java tree view of files.

The hierarchical display does not list the file attribute data, so a list-based display has
also been developed that can be used for sorting data grid files based on available
metadata (e.g., filename, file size, modification time, owner, etc.), as shown in Figure 18.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 37 -

Figure 18. ACDC data grid list-based view of sorted user files.

Basic file management functions are available via a platform-independent user- friendly
Web interface that includes file transfer capabilities, a simple Web-based file editor, an
efficient search utility, and the logical display of files for a given user in three divisions
(user/ group/public). Collating and displaying statistical information is particularly useful
to administrators for optimizing usage of resources. The ACDC data grid infrastructure
periodically migrates files between data repositories for optimal usage of resources. The
file migration algorithm depends upon a number of factors, including the following:

• User access time
• Network capacity at time of migration
• User profile
• User disk quotas on various resources

Further, we have the ability to mine log files, which aids in the determination of the
following:

• The amount of data to migrate in one cycle

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 38 -

• The appropriate migration cycle length
• The file access pattern of a data grid user
• The access pattern for public or group files

The user global file-aging attribute is indicative of a user’s access across their own files
and is an attribute of a user’s profile. The local file aging attribute is indicative of overall
access of a particular file by users having group or public access. The latter is an attribute
of a file and is stored in the file management data grid table. During migration, these
attributes are used to determine the files that are to be migrated from the grid portal
repository to a remote resource repository. Specifically, file migration is a function of
global file aging, local file aging, and resource usage (e.g., the previous use of files on
individual compute platforms is a factor in determining file migration). By tracking the
file access patterns of all user files and storing this information in the associated database
tables, the ACDC data grid infrastructure can automatically determine an effective
repository distribution of the data grid files. See Figure 19 for a schematic of the
physical data ACDC data grid.

Figure 19. ACDC data grid repository location, network bandwidth, and size.

Support for multiple access to files in the data grid has been implemented with file
locking and synchronization primitives. The ACDC data grid also provides security for
authentication and authorization of users, as well as policies and facilities for data access
and publication. The ACDC data grid algorithms are continually evolving to minimize
network traffic and maximize disk space utilization on a per user basis. This is
accomplished by data mining user usage and disk space requirements in a ubiquitous and
automated fashion.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 39 -

One advantage of SnB is that it can run in either a loosely coupled or tightly coupled
fashion, it uses a database management system, it can take advantage of computational
steering, it utilizes a geographically distributed interactive back-end visualization system,
and it is amenable to an automated backfill mechanism. Currently, we run SnB on the
ACDC-Grid from either a GUI or Web portal.

Summary. The Grid is a rapidly emerging and expanding technology that allows
geographically distributed and independently operated resources (CPU cycles, data
storage, sensors, visualization devices, and a wide variety of Internet-ready instruments)
to be linked together in a transparent fashion. SnB is a computer program based on the
Shake-and-Bake method of molecular structure determination from X-ray diffraction
data. The Shake-and-Bake algorithm for molecular structure determination was listed on
the IEEE poster “Top Algorithms of the 20th Century.” In this chapter, we have
discussed the development of tools that allow for an efficient grid-based implementation
of SnB that is extensible to a wide range of scientific programs.

We introduced the ACDC-Grid, which provides an integrated computational and data
grid, lightweight job monitoring, predictive scheduling, and opportunities for improved
Grid utilization through an elegant backfill facility. The core infrastructure for the
ACDC-Grid includes the installation of standard grid middleware, the deployment of an
active Web portal for deploying applications, dynamic resource allocation so that clusters
and networks of workstations can be scheduled to provide resources on demand, a
scalable and dynamic scheduling system, and a dynamic firewall, to name a few.

Acknowledgments. The authors would like to thank members of the SUNY-Buffalo
Grid Team, including Steve Gallo, Naimesh Shah, Jason Rappleye, Cathy Ruby, Jon
Bednasz, and Tony Kew, as well as Chuck Weeks, Sam Guercio, Adam Koniak, Martins
Innus, Dori Macchioni, Henrique Bucher, and Cynthia Cornelius, for their contributions
to the efforts described in this chapter. This research is supported by NSF ITR Grant
#0204918 and a post-doctoral fellowship from HP. Computing Resources provided by
the Center for Computational Research, SUNY-Buffalo.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 40 -

References

[1] Grid Computing Info Centre http://www.gridcomputing.com/

[2] Foster, I. and Kesselman, C., The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kauffman Publishers, Inc., San Francisco, 1999.

[3] F. Berman, G. Fox, and T. Hey, Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, 2003.

[4] The Globus Alliance, http://www/globus.org

[5] R. Miller, S.M. Gallo, H.G. Khalak, and C.M. Weeks, SnB: Crystal structure

determination via Shake-and-Bake, J. of Applied Crystallography (1994), 27, pp.
613-621.

[6] C.M. Weeks and R. Miller, The design and implementation of SnB v2.0, J. of

Applied Crystallography 32, 1999, pp. 120-124.

[7] J. Rappleye, M. Innus, C.M. Weeks, and R. Miller, SnB v2.2: An Example of

Crystallographic Multiprocessing, J. of Applied Crystallography 35, 2002, pp.
374-376.

[8] C.M. Weeks, G.T. DeTitta, H.A. Hauptman, P. Thuman, and R. Miller, Structure

solution by minimal function phase refinement and Fourier filtering: II.
Implementation and applications, Acta Cryst. A50, 1994, pp. 210-220.

[9] G.T. DeTitta, C.M. Weeks, P. Thuman, R. Miller, and H.A. Hauptman, Structure

solution by minimal function phase refinement and Fourier filtering: theoretical
basis, Acta Crystallograpica A50, 1994, pp. 203-210.

[10] M.L. Green and R. Miller, Grid computing in Buffalo, New York, Annals of the

European Academy of Sciences, 2003, pp. 191-218.

[11] H.A. Hauptman, A minimal principle in the phase problem, In Crystallographic

Computing 5: from Chemistry to Biology, edited by D.Moras, A.D. Podjarny and
J.C. Thierry, pp. 324-332, Oxford: IUCr & Oxford University Press.

[12] M.L. Green and R. Miller, Molecular structure determination on a computational

& data grid, Parallel Computing, Volume 30, Issues 9-10, September-October
2004, Pages 1001-1017.

[13] M.L. Green and R. Miller, Evolutionary molecular structure determination using

grid-enabled data mining, Parallel Computing, Volume 30, Issues 9-10,
September-October 2004, Pages 1057-1071.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 41 -

[14] M.L. Green and R. Miller, A client-server prototype for application grid-enabling
template design, January, 2004
http://www.cse.buffalo.edu/pub/WWW/faculty/miller/Papers/PPL04-1.pdf

[15] Globus Toolkit 3, http://www-unix.globus.org/toolkit/

[16] Globus Resource Allocation Manager (GRAM), http://www-

unix.globus.org/developer/resource-management.html

[17] GridFTP Data Transfer Protocol, http://www.globus.org/datagrid/gridftp.html

[18] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D.

Snelling, S. Tuecke, From Open Grid Services Infrastructure to WS-Resource
Framework: Refactoring & Evolution,
http://www.globus.org/wsrf/OGSI%20to%20WSRF%201.0.pdf

[19] Web Services Resource Lifetime, http://www.globus.org/wsrf/WS-

ResourceLifetime.pdf

[20] Web Services Resource Properties, http://www.globus.org/wsrf/WS-

ResourceProperties.pdf

[21] Web Services Notification, http://www.globus.org/wsrf/WS-Notification.pdf

[22] Modeling Stateful Resources with Web Services,

http://www.globus.org/wsrf/ModelingState.pdf

[23] The Globus Alliance: WS-Resource Framework, http://www.globus.org/wsrf/

[24] pyGlobus Project, http://www-itg.lbl.gov/gtg/projects/pyGlobus/

[25] XML Package for Python, http://pyxml.sourceforge.net/

[26] Python Extensions for the Grid (PEG),

http://grail.sdsc.edu/projects/peg/introduction.html

[27] Numerical Python, ht tp://www.pfdubois.com/numpy/

[28] Scientific Python, http://starship.python.net/~hinsen/ScientificPython/

[29] netCDF Library, http://www.unidata.ucar.edu/packages/netcdf/

[30] Message Passing Interface (MPI), http://www-unix.mcs.anl.gov/mpi/

[31] Bulk Synchronous Parallel Programming (BSPlib) http://www.bsp-

worldwide.org/

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 42 -

[32] R.H. Bisseling, Parallel Scientific Computation: A structured approach using

BSP and MPI, Oxford University Press, February 2004, 305 pages. ISBN 0-19-
852939-2.

[33] SciPy Library, http://www.scipy.org/

[34] pyGridWare Project, http://www-itg.lbl.gov/gtg/projects/pyGridWare/

[35] Integrate Perl into OGSI-based Grid Applications and Services, http://www-

106.ibm.com/developerworks/library/gr-perlinf.html

[36] SOAP::Lite, http://www.soaplite.com/

[37] OGSI::Lite, http://www.sve.man.ac.uk/Research/AtoZ/ILCT

[38] MS .NET Grid,

http://www.nesc.ac.uk/action/projects/project_action.cfm?title=145

[39] MS.NETGrid Project, http://www.epcc.ed.ac.uk/~ogsanet/

[40] Microsoft, http://www.microsoft.com/

[41] National e-Science Centre, http://www.nesc.ac.uk/

[42] OGSI.NET, http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html

[43] Optimalgrid, http://www.alphaworks.ibm.com/tech/optimalgrid

[44] Seti@home, http://setiathome.ssl.berkeley.edu/

[45] Folding@home, http://folding.stanford.edu

[46] MOAB Grid Scheduler (Silver), http://www.supercluster.org/silver/

[47] Sun Grid Engine (SGE), http://gridengine.sunsource.net/

[48] Sphinx Scheduler, http://www.griphyn.org/sphinx/

[49] J.Patton Jones and B.Nitzberg, Scheduling for Parallel Supercomputing: A

Historical Perspective of Achievable Utilization, in Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science 1659, pages 1-16.
Springer-Verlag, 1999

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 43 -

[50] Dmitry Zotkin and Peter J. Keleher, Job-length estimation and performance in
backfilling schedulers, 8th High Performance Distributed Computing Conference,
IEEE, 1999

[51] S.-H. Chiang and M. Vernon, Production Job Scheduling for Parallel Shared

Memory Systems, Proc. Int'l. Parallel and Distributed Processing Symp. (IPDPS)

[52] W. Smith, V. Taylor, and I. Foster, Using run-time predictions to estimate queue

wait times and improve scheduler performance, in Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1999
Lect. Notes Comput. Sci.

[53] R. Gibbons, A Historical Application Profiler for Use by Parallel Schedulers,

Lecture Notes on Computer Science, pages 58-75, 1997

[54] W. Smith, V. Taylor, and I. Foster, Using run-time predictions to estimate queue

wait times and improve scheduler performance, in Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1999
Lect. Notes Comput. Sci.

[55] John Keenan Talyor, Statistical Techniques for Data Analysis, Lewis Publishers,

Inc., 121 South Main Street, Chelsea, MI 48118, 1990

[56] Ian Foster, Jens Vöckler, Michael Wilde, Yong Zhao, Chimera: A Virtual Data

System for Representing, Querying, and Automating Data Derivation, 14th
International Conference on Scientific and Statistical Database Management
(SSDBM 2002).

[57] Storage Resource Manager, http://sdm. lbl.gov/srm-wg.

[58] Storage Resource Management: Concepts, Functionality, and Interface

Specification, Arie Shoshani, Future of Data Grids Workshop, Berlin, 2004

[59] Storage Element Service, http://www.ivdgl.org/grid2003/news/

[60] SRM Joint Functional Design, Version 1

.http://sdm.lbl.gov/srm/documents/joint.docs/SRM.joint.func.design.part1.doc.

[61] SRM joint methods specification version 1

http://sdm.lbl.gov/srm/documents/joint.docs/srm.v1.0.doc.

[62] The Storage Resource Manager Interface Specification, version 2.1, Edited by

Junmin Gu, Alex Sim, Arie Shoshani, available at
http://sdm.lbl.gov/srm/documents/joint.docs/SRM.spec.v2.1.final.doc.

[63] The Network Weather Service, http://nws.cs.ucsb.edu/

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 44 -

[64] W. Smith, I. Foster, and V. Taylor, Scheduling with advanced reservations,

International Parallel and Distributed Processing Symposium (IPDPS '00), May
2000

[65] The Virtual Data Toolkit, http://www.lsc-group.phys.uwm.edu/vdt/

[66] International Virtual Data Grid Laboratory, http://www.ivdgl.org/

[67] GRID2003, http://www.ivdgl.org/grid2003

[68] The Grid Laboratory Uniform Environment (GLUE),

http://www.hicb.org/glue/glue.htm

[69] Grid Physics Network GriPhyN, http://www.griphyn.org/index.php

[70] Particle Physics Data Grid, http://www.ppdg.net/

[71] European Data Grid, http://eu-datagrid.web.cern.ch/eu-datagrid/

[72] TransAtlantic Grid 9DataTAG), http://datatag.web.cern.ch/datatag/

[73] CrossGrid, http://www.eu-crossgrid.org/

[74] CERN, http://public.web.cern.ch/public/

[75] IBM Grid Toolbox, http://www-

132.ibm.com/webapp/wcs/stores/servlet/CategoryDisplay?storeId=1&catalogId=-
840&langId=-1&categoryId=2587007.

[76] IBM General Purpose File System (GPFS), http://www-

1.ibm.com/servers/eserver/clusters/software/gpfs.html.

[77] NSF Network for Earthquake Engineering Simulation (NEES) Grid,

http://www.nees.org/

[78] Structural Engineering Earthquake Simulation Laboratory (SEESL),

http://www.civil.buffalo.edu/Facilities/research.html

[79] Multidisciplinary Center for Earthquake Engineering (MCEER),

http://mceer.buffalo.edu/

[80] NEEsgrid software release 3.0, http://www.neesgrid.org/software/neesgrid3.0/.

[81] Open Science Grid Consortium,

http://www.opensciencegrid.org/activities/index.html.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 45 -

[82] Ganglia: Distributed Monitoring and Execution System.

http://ganglia.sourceforge.net.

[83] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed

monitoring system: Design, implementation, and experience. Parallel Computing,
Vol. 30, Issue 7, July 2004

[84] Mike Wawrzoniak, Larry Peterson, and Timothy Roscoe. Sophia: An Information

Plane for Networked Systems. In Proceedings HotNets-II, Cambridge, MA, USA,
November 2003

[85] Sophia, http://www.cs.princeton.edu/~mhw/sophia/documents.php.

[86] Planetlab. http://www.planet-lab.org.

[87] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks. In Proceedings
of the 5th Annual Symposium on Operating Systems Design and Implementation
(OSDI), December 2002

[88] IBM Tivoli Monitoring. http://www.ibm.com/software/tivoli/products/monitor.

[89] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information

services for distributed resource sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-
10), IEEE Press, August 2001

[90] X. Zhang and J. Schopf, Performance Analysis of the Globus Toolkit Monitoring

and Discovery Service, MDS2, Proceedings of the International Workshop on
Middleware Performance (MP 2004), part of the 23rd International Performance
Computing and Communications Workshop (IPCCC), April 2004

[91] Globus Alliance WS information services: Key concepts. http://www-

unix.globus.org/toolkit/ docs/3.2/infosvcs/ws/key/index.html, 2004

[92] Z. Balaton and G. Gombás, Resource and Job Monitoring in the Grid, in Proc. of

the Euro-Par 2003 International Conference on Parallel and Distributed
Computing, Klagenfurt, Austria (2003).

[93] R-GMA, http://www.r-gma.org.

[94] Hawkeye: A monitoring and management tool for distributed systems.

http://www.cs.wisc.edu/condor/hawkeye/.

[95] MonaLisa Monitoring, http://gocmon.uits.iupui.edu:8080/index.html

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 46 -

[96] NMI-R4, http://www.nsf-middleware.org/NMIR4/

[97] NMI-R4 New Release, http://www.nsf-middleware.org/Outreach/news_12-16-

03.asp

[98] J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,

1992

[99] A. Hunter, SUGAL User Manual v2.0,

http://www.dur.ac.uk/andrew1.hunter/Sugal/

[100] D. Levine. PGAPack, 1995 A public-domain parallel genetic algorithm library.

Available anonymous ftp from ftp.mcs.anl.gov in the directory pub/pgapack, file
pgapack.tar.Z.

[101] D. Levine. Users guide to the PGAPack parallel genetic algorithm library.

Technical Report ANL-95/18, Argonne National Laboratory, Mathematics and
Computer Science Division, June 23, 1995

[102] D. Ho, personal communication: C109 H73 N1

[103] D. Ho, personal communication: C220 H148

[104] M.G. Usha and R.J. Wittebort, Orientational ordering and dynamics of the hydrate

and exchangeable hydrogen atoms in crystalline crambin, J Mol Biol 208 (4), pp.
669-678, 1989

[105] M.G. Usha and R.J. Wittebort, Orientational ordering and dynamics of the hydrate

and exchangeable hydrogen atoms in crystalline crambin, J Mol Biol 208 (4), pp.
669-678, 1989

[106] D.A. Langs, G.D. Smith. C. Courseille, G. Précigoux, and M. Hospital,

Monoclinic uncomplexed double-stranded, antiparallel, left-handed ß5.6-helix
(↑↓ß5.6) structure of Gramicidin A: Alternative patterns of helical association and
deformation, Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 5345-5349, June 1991.

[107] V. Pletnev, N. Galitskii, G.D. Smith, C.M. Weeks, and W.L. Duax, Crystal and

molecular structure of Isoleucinomycin, cyclo[-(D-Ile-Lac-Ile-D-Hyi)3-]
(C60H102N6O18), Biopolymers 19, pp. 1517-1534, 1980.

[108] C.M. Weeks and W.L. Duax, 9α-Chlorocortison, an Active Cortisol Derivative,

Acta Cryst. B30, pp. 2516-2519, 1974.

Parallel Computing in Bioinformatics and Computational Biology Miller & Green
Wiley Book Series on Parallel and Distributed Computing Albert Zomaya, ed.

- 47 -

[109] J.M. Hodsdon, G.M. Brown, L.C. Sieker, and L.H. Jensen, Refinement of triclinic
Lysozyme: I. Fourier and Least-Squares Methods, Acta Crystallogr. B46, pp. 54-
62, 1990.

[110] P.J. Loll, R. Miller, C.M. Weeks, and P.H. Axelsen, A ligand-mediated

dimerization mode for vancomycin, Chemistry and Biology 5, pp. 293-298, 1998.

