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On the Application of the Minimal Principle to
Solve Unknown Structures

Russ Miller,* George T. DeTitta, Rob Jones, David A. Langs,
Charles M. Weeks, Herbert A. Hauptman

The Shake-and-Bake method of structure determination is a new direct methods phasing
algorithm based on a minimum-variance, phase invariant residual, which is referred to as
the minimal principle. Previously, the algorithm had been applied only to known structures.
This algorithm has now been applied to two previously unknown structures that contain 105
and 110 non-hydrogen atoms, respectively. This report focuses on (i) algorithmic and
parametric optimizations of Shake-and-Bake and (ji) the determination of two previously
unknown structures. Traditional tangent formula phasing techniques were unable to un-

ravel these two new structures.

The Shake-and-Bake procedure (I, 2} has
been designed and implemented on a vari-
ety of computing platforms for the purpose
of determining crystal structures by means
of minimizing a recently proposed minimal
function (2-3). The focus of this report is
on: (i) algorithmic and paramertric optimi-
zations we have made to the basic algorithm
(1), based on successful applications of
Shakc-and-Bake to 14 known structures
aver six space groups, ranging from 25 ro
127 non-hydrogen atoms in the asymmetric
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unit cell, und (ii} rhe application of this
modified algorithm (o solve two previously
unknown structures. In particular, the al-
gorithmic and parametric optimizations we
present were guided predominantly by the
experimentation on three known struc-
tures, namely, the 28 non-hydrogen atom
Qa-methoxycortisol (6), the 84 non-hydro-
gen atom isoleucinomycein (7), and the 127
non-hydrogen atom isolcucinemycin ana-
log (8).

The two previously unknown structures
solved by our algorithm are two polymor-
phic forms of a cycloheptapeptide, terna-
tin{l), a 110 non-hydrogen atom structure
(%, and ternatin(Il), a 105 non-hydrogen
atom structure (10).

The minimal function has not been
applied previously to an unknown complex
structure. A considerable effort to solve the
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ternatin(l} structure by traditional tangent
formula methods proved unsuccessful. Ap-
proachcs taken included the testing of
~50,000 randomly generated phase sets
(11} as well as an additional 500,000 per-
muted phase sets. Moleculur replacement
(12} was also invoked, but the models
considered were construcred wirh seven
l-amino acids, and as it turns out, the
structure was lacer found to contain three L-
and four D-configutation amino acids. [De-
tails of the two new structures are given in
{13).] It remains to be demonstrared
whether these two structures could have
been as easily determined by several other
new promising techniques that ure current-
ly being developed, including the Sayre
equation tangent formula {I4), phase an-
nealing (15), and low-density elimination
(16). In any event, the Shake-and-Bake
algorithm was able to determine each struc-
ture in ~70 min of CPU ¢me on a Con-
nection Machine CM-5.

A general introduction to the erystallo-
graphic phase problem is given in Box 1.
We have recently proposed that a particu-
larly simple function of the phases takes on
its conscrained minimal value for the cor-
rect set of phases. A brief review of the
minimal principle is given in Box 2. The
minimal principle states that R(P) < R(8)
for N atom structures S # P (the given
structure). In other words, among all phases
¢ that satisfy the necessary identities, those
corresponding to the true structure P, min-
imize R{d). Inspection of the minimal
function R shows it to be a weighted sum of
squares of residuals, that is, the differences
between cosines and their expecred values,
the ratios of the Bessel functions [,/1,. The
known conditional probability distributions
of the triple Ty, given the three magni-
tudes |E'[ of Eq. 4, and the known condi-
tional distributions of the quartet Qp g of
Eq. 5, lead directly to the expected values
of the corresponding cosines, I {A)/
I{Agy) and I (B ol Ta(B ), respec-
tively. In addition, these same distributions
show that the reciproculs of their variances
are strongly correlated with Ay and
[By sanals Tespectively. Thus, in analogy with
the principle of least squares, the minimal
principle, which attempts to minimize the
weighted sum of squares of residuals, Eq. |,
becomes plausible. Furthermore, it can be
shown rigorously that the values of R{b),
when the phases are set equal to their true
values for any choice of origin and enunti-
omorph, are indeed smaller than the values
of R(d) when the phases ¢ are chosen “at
random.”

Although a number of standard minimi-
zation techniques exist, including simulaced
annealing (I7) and genetic algorithms
(I18), such techniques are targeted at min-
imization with respect to the range of a



function. Therefore, it does not appear that
such techniques can be applied to our func-
tion to produce a solution. However, we
have recently developed a computationally
intensive solution straregy, which we call
Shake-and-Bake, targeted at minimization
with respect to the range of our function
while maintaining the integrity of the pa-
rameters with respect to the domain of the
function.

Notice that for a structure consisting of
M independent atoms in the asymmetric
unit, we must determine the 3M variables
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Fig. 1. The Shake-and-Bake algorithm.

comment: Let (¢} be Lhe entire set of phases
comment: Let ¢; be the j** phase in {¢)
Shift = Initial _Phase_Shifl

For i = 1 to Number_of _Passes

For j = 1 1o Number_of_Phases
Phase = ¢,
Ky = R({é})
¢; = Phase + Shift
Ra = R{{&)}
#; = Phase — Shift
B3 = R((¢})
if mia(Ry, Rz, R3) = Ay then ¢; = Phase
if min(Ry, Ra, R3) = My then $; = Phase + Shift
if min{ &y, B2, Bs) = A3 then ¢; = Phase — Shift
end{j-loop}
Shift = Shife/2
end{i-loop}
Fig. 2. Pseudo-code of the giobal binary search

routine used for performing the local minimiza-
tion.

that define the fractional atomic positions
in the asymmetric unit of the crystallo-
graphic unit cell. To do so, we might need
ro secure values for ~ [OM phases, which in
turn might occur in some Q(M?) triples and
O(M? quartets. Recasting the minimal
principle from a funcdon of invariants
R(®) to one of structures R(S) greatly
simplifies our search. That is, we arc in the
“enviable” position of having to search for
the minimum of a function of only some
hundreds or thousands of variables. In order
to proceed in this direction, we need a way
to impose the constraints implicit in the
reduction of the problem from R(®P) to
R(S).

We can now consider a likely form of
the constraints on the phases. We know
that permissible (feasible) solutions to the

phase problem (that is, sensible phase scts)
should yield physically reasonable electron
density maps. In particular, thosc maps
should be everywhere nonnegarive and
should contain local areas of high electron
density associated with atomic positions.
We realized that we could impose these
twin constraints on the phases by the pro-
cess of Fourier inversion. That is, the min-
imization of R(P)} would be allowed to
proceed to some limited degree with the
refined, but unconstrained, phascs used (ro-
gether wicth observed amplitudes |E]) to
caleulate a Fourier map. The resulting
“structure” {in reality, the positions of the
M largest nonnegative density fearures in
the map) would in turn be used to calculate
structure factor amplitudes and constrained
phascs. The phases arc constrained in the

Box 1. The crystallographic phase problem. The single-crystal x-ray diffraction technique of
structure determination is aimed at providing a three-dimensional map of the positions of
atoms in a crystal, thereby securing unambiguous information about the architeciure of a
given molecule. The three stages of an x-ray diffraction experiment are:

1) The growth of suitable single crystals of the substance to be studied;

2) The measurement of x-ray diffraction data, and

3} Unraveling the molecular siructure so that it agrees with the diffraction dala.

The last step iz frequently computationally intensive and is the focus of this research.

In the experimenl (step 2, above), the crystal is oriented with respect to the x-ray beam, so
that an individual diffracting plane is brought into the Bragg condition and the intensity of the
diffracted photons is recorded. This process is repeated anywhere from a few hundred to a
few million times. depending on the size of the siructure to be defermined, as individual
difiracting planes are brought into the Bragg condition. Each scattered beam. called a
reflection. is characterized by a location on a three-dimensional grid, or reciprocal lattice,
corresponding to the orientation of the crystal and the angle which the diffracting plane
makes with the incoming x-ray beam. Because the grid constitules a true lattice, each
reflection can be labeled by three integers, the Miller indices, which denoie the location of
the reflection on the reciprocal laltice relative to a common origin. The intensity of each
reflection is related to the efficiency with which a Bragg plane diffracts x-rays. The intensity
of an individual reflection is related to the density of clectrans in the near vicinity of the Bragg
plane. The underlying atomic arrangement in a crystal is related to the intensities and
locations of the Bragg reflections by a three-dimensional Fourier transformation. We use the
ferm real space to refer to the atomic arrangement of Lhe crystal and the term reciprocal
space to refer 1o the intensities and locations of the reflections.

It would seem that all of the information necessary to unravel the structure of molecules in
crystals is assembled once the diffraction experiment is concluded. Unfortunately. the data
produced from this experiment do not provide all of the information necessary to complete
the structure. The three-dimensional atomic coordinates of the crystal are calculated by a
three-dimensional Fourier transform in which the amplitudes, positions, and phases of the
reflections are used. The experiment yields the amplitudes and positions of the Fourier
components, but not their phases. It is the determination of these missing phases that
constitutes the phase problem of x-ray crystallography.

Early analyses of the phase problem led many to believe that the problem was in principle
unsolvable. An infinity of Fourier transformation maps could be had that fit the experimental
results; they would differ only in the sel of phases used to reconsiruct the atomic
arrangemeni. On the other hand, because a small number of structural arrangements had
been ascertained by a trial and error method, it seemed that there must be a solution to the
phase problem.

Two physical constraints make the problem not only solvable, but in principle greatly
overdetermined. One is the hard constraint that for a Fourier transformation to be physically
meaningful it must lead lo a map in which the calculated electron density is everywhere
nonnegative. The other is a softer constraint that the electron density about atoms in
molecules {whether in crystals or in the gas phase) is strongly concentrated about the atomic
centers (the nuclei). "Nonnegativity" and “atomicity” were two important principles in the
earliest formulations of direct methods. In a direci-methods attack on the phase problem,
probabilistic theories are used to refate the phases. or more precisely certain linear relations
among the phases, which are called structure invariants, to the measured intensity dafa.
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scnse that they map to a trial structure in
the known space group, with atomicity and
nonnegativity explicicly imposed, and that
the peaks of the map correspond to the
known number of atoms M to be located.
Thus, the needed constraints would not
actually hold in the minimization procedure
itself, but would be used to adjust the
refined phases to values that do obey the
constraints.

Our Shake-and-Bake solution strategy
allows a simple, local minimization tech-
nique to be applied in reciprocal space,
while indircctly applying the aforemen-
tioned constraints in real space (Fig. 1). In
this manner, we hope to produce solutions
by creating an arbitrary, yet chemically
sound, structure and allow it to pradually
migrate toward the correct structure by
local perturbations that result in increasing-
ly smaller values of the minimal function.

Although we continue to explore a va-
riety of minimization techniques, including
gradient descent and paramecrer shift, the

local minimization technigue used in the
application of Shake-und-Bake to the ter-
natin structures is a global binary search
routine (I19). This decision was based in
part on experimental evidence with respect
to the 84-atom tsoleucinomycin structure,
which shows that the function R is mono-
tonic, or at worst bitonic, with respect to
an individual phasc. This binary scarch
routine visits each of the phases in sequence
a fixed number of times. During each visit,
the current value of a phasc, as well as that
value adjusted by a predetermined amount
in both the positive and negative dirce-
tions, are considered with respect to the
minimal function. The best of these three
values (that is, the value thar produces the
smallest value of the minimal funcrion) is
chosen as the (potentially) new value of che
phase. An overview of this routine is given
in Fig. 2, where for our application, the
initial phase shift was set to 90°, and the
number of passes made through the entire
set of phases was five.

Box 2. The minimal principle. We assume a crystal structure P to be fixed, but unknown a
priori. The normalized structure factor magnitudes |E| are also assumed to be known. The
function to be minimized, the so-called minimal function, is defined initially as a function,
R(®), of the structure invariants Ty and QLun.

1 (Auk) }2 { 1{(BLwn) }2
coSTuk— ———r + cos - —
P AT 2 [BuamoosGuame = £ 5
R(®) =
EAHK+ 2 |Buran 1
HK LMN
We define
Tak=du+ dx+d_n. {2)
to be a triple,
Ouun=0Ltdmt+dn+db_ L _m_n (3)
to be a quartet, and the functions Ay, and By yw 10 be:
2
Auk = N |EnERER | Kl {4)

2 :
Bimn = ﬂ]ELEMENEL iman (EcamlP + [EmanlP+1EnsfF -2 (5

where N is the number of aloms, assumed identical in the whole unit cell, and /, and /, are
maodilied Bessel functions. It should be noted that By can lake on negative values when
the cross terms (|Ey .ml, |Ex+nl. 1Ens) are very small, so it sums into the denominalor of Eq.
1 as its absolute value. Furlher, the ratio of Bessel functions /,/1, is known 1o be the expected
value of the corresponding cosine. In view of Egs. 2 and 3, Eq. 1 also defines R as a function,
A(d), of the phases. Because the magnitudes |£j are presumed 1o be known, the functions
A(®) and R(4) are well defined solely as functions of @ and &, respectively.

The phases are funclions, for a tixed choice of origin and enantiomorph, of the atomic
position veclors. Specifically,

N
i 1 iH-T
En = |Enle®™ = er% ’
f= 1
where r, is the position vector of the atom labeled . Because the structure invariants Ty and

O wn are uniquely determined for any given struclure S, independent of the choice of origin,
it follows that Eq. 1 alse defines a funclion, A(S}, of structures S.

(6)

The Shuke-and-Bake algorithm is tar-
geted at minimizing the function in terms of
the phases, while imposing the constraine
of structural aromicity. As with any mini-
mization strategy that is prone to locking in
on local minima, our implementation will
explore many initial scructures  (trials).
Each initial structure is generated as a set of
fractional atomic coordinaces through ran-
dom number generation. The generation of
the random atomic coordinates is such cthar
the resulting structures satisfy certain chem-
ical constraints. Space group operators are
then applied to the set of atoms in order ta
gencrate  symmetry-related  atomic  posi-
tions. The resulting constellation of atoms
is used in the structure factor calculation to
arrive at a starting set of phases. The phase
values are then adjusted by a local minimi-
zation procedure to reduce the value of
R(D). After a minimization cycle, the
adjusted phases are rccombined with the
measured structure factor amplitudes to cal-
culare a Fouricr map, through an inverse
three-dimensional Fourier transform. This
map is then scanned to locate the {ar most)
M highest peaks. These peaks constitute a
new structure which has several favorable
characteristics. It has (no more than) the
requisitc number of atoms, and it has been
generated with the experimentally deter-
mined magnitudes. Currently, the resulting
structure is recycled a fixed number of times
through the process of Fourier transforma-
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Fig. 3. The course of A(d) for a solution {bold)
versus a nonsolution of ternatingl} with respect
to R(®).

Table 1. Data corresponding 1o solutions for
both struclures.

Parameter Ternatin(l)  Ternatin(ll)
Atoms in structure 110 105
Aloms per frial 104 104

structure
Phascs 1,000 1.000
Triples 20,000 20.000
Quartets 0 0
Rellections available 6,273 5512
Reflections utilized 5,463 5512
Cycles 150 150
Trials 2.048 2,048
Solutions § 19
Percentage 0.3 08
Time per cycle(s) 225 28.5
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tion, local minimization, Fourier synthesis,
and peak picking. By obscrving the result-
ing values of R(S) over the set of trials that
have been processed, we are able to deter-
mine whether or not a solution has been
obtained.

Based on experimentation with respect
to the 28-atom, 84-atom, and 127-atom
strucrures, we conjecture that the number
of cycles of Shake-and-Bake nccessary to
determine the structures under consider-
ation is of the order of 1.5 times the number
of atoms in the structure. Therefore, we
chose to perform the algorithm for 150
cycles on both of the previously unknown
~100-atom structurces.

Experimentation on the 84-atom and
127-atom structures indicates that a cost-
effective ratio for phases to atoms is approx-
imately 10 to 1, while a cost-cffective ratio
for triples to phases is approximately 20 to
1, and the incorporation of negative quar-
tets (that is, B < 0) may be unnccessary.

The experimentation described in this
report has been performed predominantly
on 2 Connection Machine CM-5 at Think-
ing Machines Corporation. Pertinent de-
tails of the experiments are given in Table
1. For both previously unknown structures,
it was assumed thar there were 104 atoms,
although we subsequently found this not to
be the case. Nevertheless, we used 104
atoms in the procedure. Further, based on
the 10:1 phuse ro arom ratio and 20:1
triplet o phase ratio (no quartets}, we
chose to use 1,000 phases, 20,000 triples,
and O quartets. Notice that in the case of
rernatin(l}, a number of reflections were
removed from the full daca set thut corre-
sponded to fi indexes of 9 through 11 on the
basis that their Ffo(F) ratios were abnor-
mally smail. We chose to run the algorithm
for 150 cycles using the 1.5:1 cycle 1o atom
ratio. Based on available computer time,
and desiting a sufficicnt sample size, we
processed 2048 initial, randomly generated
starting structures.

The six solutions produced for terna-
tin{) had final R(®) values in the [0.45,
0.46] range, whereas the nonsolutions had
final R(®} values greater than 0.49, The 19
solutions produced for ternarin{1D) had final
R(®) wvalues in the [0.41, 0.42] range,
whereas the nonsolutions had final R(®)
values greater than 0.46. In other words, as
mentioned previously, R(@®) is diagnosric in
terms of detecting solutions. A visual rep-
resentation of the convergence of a solution
versus a nonsolurion for ternatin(l) wich
respect to R(®) is shown in Fig. 3. [n fact,
based solely on the final R(®) values, we
were able to determine that after 64 trials of
ternatin{l) a single solution was at hand,
and thac after 64 trials of ternatin{Il) there
wete two solutions. Each initial 64-trial
experiment was performed in ~70 CPU

min on a 64-node Connection Machine
CM-5. [t was only later that we decided to
run both structurcs for 2048 triuls for statis-
tical purposes. The percentage of success
was significantly higher for ternatin(l[}
than for ternatin{l). This difference may be
due to the fact that there was a threefold
higher percentage of aberrant triples with
high A values for ternatin(l) as compared to
ternatin{ll), which more nearly matched
the expected rate of failure predicted by the
A-values.
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