
Parallel Processing Letters
fc World Scienti�c Publishing Company

The Systolic Recon�gurable Mesh

MARY M. ESHAGHIAN-WILNER�

Department of Electrical Engineering, University of California at Los Angeles

Los Angeles, CA 90095-1594, USA

and

RUSS MILLER

Department of Computer Science, State University of New York at Bu�alo
Bu�alo, NY 14260

Received (November, 2003)
Revised (July, 2004)

Communicated by (J.L. Gaudiot)

ABSTRACT
In this paper, we introduce the Systolic Recon�gurable Mesh (SRM), which combines

aspects of the recon�gurable mesh with that of systolic arrays. Every processor controls
a local switch that can be recon�gured during every clock cycle in order to control the
physical connections between its four bi-directional bus lines. Data is input on one side
of the systolic recon�gurable mesh and output from another side, one row/column per
unit time. E�cient algorithms are presented for intermediate-level vision tasks, including
histograming, connectivity, convexity, and proximity.

Keywords: Recon�gurable mesh, image algorithms, component labeling, mesh-
connected computer, and proximity.

1. Introduction

Over the past few decades, several mesh-based parallel architectures, including the
mesh-connected computer, mesh-of-trees, and pyramid, have been considered for
performing several interesting low- and intermediate-level computer vision tasks
(c.f. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). This is due to the fact that a two-
dimensional image can be mapped in a straightforward fashion onto a two-dimensional
mesh. In particular, recon�gurable meshes have been shown to be attractive com-
putational engines relative to the traditional mesh-connected computer due to the
exibility that the recon�gurable bus o�ers in terms of long distance communica-
tion. Further, recon�gurable meshes are practical in that they can be implemented
using VLSI technology [17,18,19,20,21,22], and can also be integrated with MEMS
designs [23]. For a recent study of recon�gurable computing systems, refer to Bon-
dalapati's thesis and related publications [24,25,26].

�The present address of the author.



Parallel Processing Letters

The recon�gurable mesh was originally proposed as a massively parallel com-
puting model in the late-1980s [27,28,12,29]. A review of the algorithmic literature
[30] suggests that a major area of emphasis has been on i) fundamental problems,
including sorting and arithmetic, ii) problems involving regularly structured data,
such as matrices and images, in areas such as graph theory and image processing,
and iii) geometric problems, where the amount of input data is sparse compared
to the size of the recon�gurable mesh. Even though aspects of the recon�gurable
mesh have been incorporated into the communication of the MasPar machines [31]
and the Gated Connection Network of the Image Understanding Architecture [6],
most of the algorithmic results in this area are of purely theoretical interest.

In this paper, we consider problems in low- and intermediate-level image pro-
cessing. These problems include histogram, convex hull, nearest neighbor, and
component labeling, to name a few. Given an n � n digitized black/white image,
distributed in a natural fashion one pixel per processor on a mesh of size n2, e�-
cient mesh algorithms have been constructed to solve these, and related problems,
in O(n) time [32]. While the mesh algorithms to solve these problems on n � n

image input requires 
(n) time, the running time of our algorithms to solve these
problems on a systolic recon�gurable mesh of size n2 is a function of the O(n) input
time, the O(n) output time, and either �(1) or �(logn) intermediate processing
time.

We introduce a practical, scaled-down variant, of the recon�gurable mesh. The
intent is to provide a computing engine that will signi�cantly improve the perfor-
mance over a large set of related algorithms on a realizable 21st century architecture.
The rest of the paper is organized as follows. In the next section, we review the re-
con�gurable mesh and introduce the systolic recon�gurable mesh. In Section 3, we
present e�cient algorithms to solve a variety of related problems, predominantly in
the area of intermediate-level image processing. Finally, in Section 4, we conclude
by discussing a number of open problems using this novel model.

2. The Architecture

The systolic recon�gurable mesh (SRM) is a variation of the standard recon�gurable
mesh (RM) models. Therefore, we �rst de�ne the recon�gurable mesh and then
extend this de�nition to that of the systolic recon�gurable mesh.

2.1. RM

The mesh with recon�gurable bus, or recon�gurable mesh (RM) of size n2 consists
of an n�n array of processors connected to a grid-shaped recon�gurable broadcast
bus, where each processor has a locally controllable bus switch, as shown in Figure 1.
The switches allow the broadcast bus to be divided into subbuses, providing smaller
recon�gurable meshes. For a given set of switch settings, a subbus refers to a
broadcast bus over a maximally connected subset of processors. Except for the
buses and switches, the recon�gurable mesh is similar to the standard mesh. It
is worth noting that, like the mesh, the recon�gurable mesh of size n2 occupies
�(n2) area, under the assumption that processors, switches, and a link between
adjacent switches occupy unit area. Further, notice that from a theoretical point



The Systolic Recon�gurable Mesh

of view, there is no need to include the basic NEWS (north, east, west, and south)
connections in the model, as the recon�gurable bus can be used to provide these
connections in �(1) time by cycling through a simple set of four switch settings.

Processor

Switch

Bus

Fig. 1. A recon�gurable mesh of size 16.

While variations in the recon�gurable mesh model exist in terms of number of
processors, layout of the processors, processing power, communication primitives,
and so forth, a reasonably generic set of parameters includes the following.

� An exclusive write, in which one processor per disjoint subbus is permitted to
broadcast a word of data to its subbus, which is available to all processors on
the subbus.

� A concurrent write, in which multiple processors are permitted to simultane-
ously broadcast a single bit of data to their subbus, where the logical OR of
the bits is available to all processors on the subbus.

� A unit-delay broadcast, in which all broadcasts take �(1) time.

Therefore, in �(1) time on the generic recon�gurable mesh model, every processor
can perform a �xed number of arithmetic and Boolean operations on the contents of
its own local memory, every processor can set the physical communication pattern
between its four bus lines, either an exclusive write or a concurrent write can be
performed on every subbus, and every processor can receive information sent to its
subbus.

2.2. SRM

A systolic recon�gurable mesh of size n2 consists of n2 processors arranged in a
two-dimensional grid overlaid with a grid-shaped recon�gurable bus. See Figure 2.
Every processor controls a local switch that can be recon�gured during every clock
cycle to control the physical connections between its four bi-directional bus lines,
realizing any of 15 possible combinations. Without loss of generality, assume that
data is input from the left side of the systolic recon�gurable mesh, one column of



Parallel Processing Letters

Processor

Switch

Fig. 2. A systolic recon�gurable mesh of size 16. Each generic processor contains a switch that is
under local control and can be used to con�gure the four bus lines in any of 15 possible combina-
tions. Input is from the left and output is to the right.

data per unit time, and eventually output from the right side, again, one column
per unit time. Note that it is possible to design a systolic recon�gurable mesh,
where the input comes from left but it is output from the top (see Algorithm 2 of
section 3.5).

Given mn input items to be processed on a systolic recon�gurable mesh of size
n2, the computations on the systolic recon�gurable mesh fall naturally into three
phases. The �rst phase can be classi�ed as the input and preprocessing phase,
where at time t, n data items are input and a (small) �xed number of operations
are performed over some subset of the tn items that have been input thusfar. After
completing the input and preprocessing phase following time m, the static com-
puting phase is performed on the O(mn) items currently available in the systolic
recon�gurable mesh. Finally, the output and postprocessing phase consists of pump-
ing the data out, typically n items per unit time, and performing a (small) �xed
number of operations on the remaining data, until all of the output has been pro-
duced. Whenever possible, it is desirable to design an algorithm with the property
that it does not have a static computing phase and that the total running time is
kept to a minimum.

Similar to the recon�gurable mesh, variations of the systolic recon�gurable mesh
are possible. In this paper, we consider two such variations. They include the

1. bit model (BM), where individual processors can operate on a �xed number
of bits of data in unit time, and the

2. word model (WM), in which individual processors can operate on a �xed num-
ber of 2 logn bit words of data in unit time.

For both variations, we assume that concurrent writes of a single bit (for BM) or
word (for WM) of data to a subbus is permitted if the values are identical. We also



The Systolic Recon�gurable Mesh

assume that in unit time a bit (for BM) or word (for WM) of data can be broadcast
to a subbus and read by all processors attached to that subbus. These assumptions
are all reasonable and realizable in terms of designing and implementing a VLSI
chip or a board that can be used in a workstation environment. Furthermore, every
step of an algorithm designed for the word model can be simulated on a bit model
variant in O(log n) time, where a word is logn bits wide.

3. Designing Algorithms

When designing algorithms for meshes or recon�gurable meshes, it is typically as-
sumed that the data already resides in the processors. When designing algorithms
for the systolic recon�gurable mesh, this assumption no longer holds, as the time
to perform input and output of data is considered in the complexity analysis of an
algorithm. Denote a recon�gurable mesh of size n2 by R, and a systolic recon�g-
urable mesh of size n2 by S. Suppose algorithm A requires t time on R. Then A can
be simulated on S by �rst inputing the n2 pieces of data in n unit-time steps, then
performing algorithm A on S in t time, then outputting the O(n2) �nal entries in n
unit-time steps. Therefore, the total time for simulating recon�gurable mesh algo-
rithm A on a systolic recon�gurable mesh is 2n+ t. Suppose algorithm B requires
t0 time on a mesh of size n2, where t0 = 
(n). Then, the total time for simulating
mesh algorithm B on a systolic recon�gurable mesh is 2n + t0. Note that in the
above two cases, the time complexities of the static phase are t and t0, respectively.

Therefore, if one were only concerned with an asymptotic analysis of algorithms
on the systolic recon�gurable mesh, then one could simply simulate any mesh or
recon�gurable mesh algorithm in O(n) time. (Notice that the class of O(n) time
recon�gurable mesh algorithms properly includes the class of O(n) time mesh al-
gorithms.) However, in this paper we focus on practical algorithms that can be
e�ciently performed on a realizable architecture, such as a companion board in a
workstation targeted at image processing applications. Therefore, our goal is to
design algorithms that not only eliminate the static phase, but which are complete
in no more than 2n cycles. More generally, we are concerned with

1. minimizing constants,

2. preserving the systolic nature of the systolic recon�gurable mesh, and

3. eliminating the static stage of the algorithms.

In this section, we present some fundamental algorithms for the systolic recon-
�gurable mesh. For convenience and consistency, we assume that the input to the
problems is a set of n2 data items fed into a systolic recon�gurable mesh of size n2.

3.1. Histogram

Consider the problem of creating a histogram of input values, where all such values
are in the range of 1 : : : n. The results will be maintained in the last column of
the systolic recon�gurable mesh. Speci�cally, the total number of occurrences of
value i, 1 � i � n, will be maintained in SRM(i; n). In this section, we present an
algorithm that works for the word model and is easily adaptable to the bit model.



Parallel Processing Letters

For the word model, every step takes O(1) time, while for the bit model, every step
takes O(log n) time.

The following is an outline of the word model/bit-model algorithm. It describes
the operations performed during every cycle in the input and preprocessing phase
once the new column of data has been input into the �rst column of the SRM.
Again, assume that processor SRM(i; 1) has just received a data item with value
d.

1. Broadcast a single bit=1 along row i to SRM(i; i).

2. Broadcast a single bit=1 from SRM(i; i) to SRM(d; i).

3. SRM(d; i) adds the 1 received to its counter value, therefore it's counter is
incremented by 1.

The three steps of the input and preprocessing cycle outlined above, take o(1)
time for the word model and O(logn) time for the bit model. There is no static
computing phase in this algorithm. In the output and postprocessing phase, in
every cycle, every processor except those located in the last column, passes the
value of its counter in lockstep to its right neighbor. Then every right neighbor
that receives this value adds it to its current count. Every cyle in this phase takes
O(1) time in the word model and O(logn) time in the bit model. The �nal results
of the histogram will be ready as soon as the image leaves the mesh. The results
will be stored in the last column, where the processor in the dth row of the last
column has the count of occurances of the value d in the image.

Theorem 1 The histogram problem for n2 input items in the range of 1 : : : n
can be solved on the word-model (bit-model) systolic recon�gurable mesh of size n2

using only a small �xed (�(logn)) number of broadcasts per input and preprocessing
cycle, eliminating the static phase, and outputting the results upon completion.

3.2. Convex Hull

Consider the problem of marking the extreme points representing the convex hull of
an n� n binary image. While the results for the histogram problem just presented
were stored in a convenient predetermined location of the SRM, for this problem
the results will be maintained along with the image. That is, the value of a pixel
at position (i; j) will be maintained as part of a record that also includes a ag
indicating whether or not pixel (i; j) is an extreme point of the image. It should be
noted that this \marked" ag will be set to true after the completion of cycle t < n

(i.e., after t columns of the image have been input and preprocessed) if and only if
pixel (i; j) is an extreme point of the restriction of the image to the rightmost n� t

subimage.

Given the word model, each input and preprocessing cycle consists of the fol-
lowing. Similar results have appeared in literature, see [33].

1. In lockstep, shift the image to the right while inputing the next column of
data into the �rst column of the SRM.



The Systolic Recon�gurable Mesh

2. Perform bus splitting in column one of the SRM for the purpose of identifying
the topmost and bottommost black pixels that were just input.

3. Mark these pixels as extreme points and broadcast their coordinates to all
processors.

4. Every marked pixel uses the coordinates of these two new extreme points,
its point, and its previous extreme point in enumerated order, to determine
whether or not it is to remain marked as an extreme point.

5. The extreme points that precede these two new extreme points in the enu-
merated ordering are identi�ed and their locations are broadcast to these new
extreme points.

Notice that as the data ows from left to right in a truly systolic fashion, the
marked �eld and preceding point location �eld for each pixel remains tied to the
pixel data. Therefore, once all of the data has been input, the data may be output in
a natural fashion. Again, it is important to note that the static stage is nonexistent.
Further, the output and postprocessing stage is reduced simply to outputting the
highlighted/marked image.

Theorem 2 Given an n�n binary image and a word-model (bit-model) systolic
recon�gurable mesh of size n2, using only a small �xed (�(logn)) number of broad-
casts per input and preprocessing cycle, eliminating the static phase, and outputting
the image in lockstep fashion with no additional work, the convex hull of the image
can be marked.

3.3. Nearest Neighbor

Consider the problem of determining for every black pixel in an n�n binary image,
the coordinates of a nearest black pixel. As with the previous problem, the input
image will be fed into the SRM in a natural fashion, one column per input and
preprocessing cycle, and for each pixel, the coordinates of a running nearest neighbor
will be coupled to the pixel. During the output and postprocessing stage, when pixel
(i; j) is output, so will the coordinates representing a nearest neighbor for pixel (i; j).
(Notice that while the distance to a nearest neighbor is necessarily unique, there
may be multiple near neighbors. In the case where multiple nearest neighbors exist,
the algorithm will record one such neighbor.)

The algorithm makes use of the triangle inequality. Given the word model, each
input and preprocessing cycle consists of the following steps.

1. In lockstep, shift the image to the right while inputing the next column of
data into the �rst column of the SRM.

2. Use bus-splitting and broadcasting, as well as communication between adja-
cent processors in the �rst column of the SRM, to determine for every pixel
(whether black or white) in the �rst column, the nearest black pixel in the
column both above and below.

3. Perform row broadcasts so that every processor SRM(i; j) learns the coordi-
nates of the two black pixels determined by processor SRM(i; 1).



Parallel Processing Letters

4. Every processor that contains a black pixel of the image determines whether
either of these pixels is closer to its pixel than the previously recorded nearest
neighbor, and if so, updates its nearest neighbor entry.

As with the previous algorithm, the data ows from left to right in a truly
systolic fashion, and the desired information remains associated with the input
data throughout the process. Therefore, once all of the data has been input, the
desired information may be output in a natural fashion. Again, notice that the
static stage is nonexistent and the output and postprocessing stage consists simply
of outputting the required information as an image.

Theorem 3 Given an n�n binary image and a word-model (bit-model) systolic
recon�gurable mesh of size n2, using only a small �xed (�(logn)) number of broad-
casts per input and preprocessing cycle, eliminating the static phase, and outputting
the image in lockstep fashion with no additional work, a nearest neighboring black
pixel can be identi�ed for every black pixel in the image.

3.4. Minimum or Maximum

Consider the problem of �nding the minimum (or maximum) value from a set of
n2 input values. Notice that this problem di�ers signi�cantly from the histogram
problem previously presented in that there is no restriction on the range of input
values. The algorithm is straightforward based on the word model. The details are
not shown as similar work has appeared in the literature [34].

Theorem 4 Given an n�n binary image and a word-model (bit-model) systolic
recon�gurable mesh of size n2, using only a small �xed (�(logn)) number of broad-
casts per input and preprocessing cycle, eliminating the static phase, and outputting
a single value, the minimum or maximum value can be determined.

3.5. Component Labeling

Consider the problem of labeling an n� n binary image. A simple approach would
be to input the image in a natural fashion, apply a straightforward bit-polling
algorithm to label the image [27], and then output the image in a natural fashion.
Notice that the time for such an algorithm is 2n+log2 n and that 2 context switches
are required due to the inclusion of the static stage. It is possible to overlap the
static stage with the input stage by performing bit polling during every input step.
This results in the image being labeled by the end of the input stage, requiring
n log

2
n time. The labeled image can then be output by repeating the previous

steps for another n steps (leading to a total running time of 2n log2 n) or by context
switching to n simple shift steps (leading to a total running time of n log2 n + n).
Similarly, given an n� n adjacency matrix input, the logn bit polling algorithm of
[6] can be applied to every input step so that in n log2 n time the image is labeled.
It becomes quite a challenge to produce an e�cient algorithm that omits the static
stage and also avoids repeating the logn-time based labeling schemes in each step.

In this section, we present three algorithms, all of which consider an n � n

digitized image as input. The �rst one is a simple three phase algorithm that works
for the word-model and well as bit model, and runs in 3n cyles, each cyle take O(1)



The Systolic Recon�gurable Mesh

time in the word model and O(log n) time in bit model. The second algorithm is a
two phase algorithm for the bit model, which runs in an optimal 2n cycles, where
each cycle includes a logn time bit polling routine. Note that this algorithm receives
the input from the left, but outputs the data from the top row of processors instead
of from the right column of processors. The third algorithm runs in an optimal 2n
cycles for the word-model. However, in each of the n output steps, the algorithm
includes a constant time sorting operation, which is not as desirable in practice as
it is in theory.

For the �rst two algorithms presented in this section, the component labels
assigned to the pixels will be of the form < CR, CL, RT >, where CR is the index
of the rightmost column containing a pixel of the component, CL is the index of
the leftmost column containing a pixel of the component, and RT is the index of
the topmost row containing a pixel in the component.

3.5.1. Algorithm 1:

As with some of the previous algorithms, the component label record will remain
coupled to the pixel value as the pixel travels through the systolic recon�gurable
mesh. When a pixel is initially input to the SRM, the �elds of the component
label will be initialized to < 0; 0; 0 >. These values will be updated throughout the
course of the algorithm. The following is an outline of a straightforward component
labeling algorithm for the word and bit model.

1. At time i, shift the entire image to the right while inputting column n� i+1.
Create a connected bus over every connected region. Next, every processor in
column 1 of the SRM that contains a black pixel broadcasts the value n� i+1
to be stored as CL for its connected region. (Notice that after cycle t = n, all
n columns have been input and CL has been properly determined for every
connected component.)

2. For t = n+ i, for row i = 1 to n do: Every processor in row i that contains an
upper boundary black pixel (white neighbor to its top) broadcasts the value
i to be stored as RT for its connected component. This value is stored in
the appropriate �eld by a processor representing a black pixel only if RT =
0. (Notice that after cycle t = 2n, the values of RT have been properly
determined.)

3. At cycle 2n + i, the ith column of the image is output as follows: For each
processor in column i that contains a black pixel, if CR = 0 then broadcast
the value of i as CR to all processors containing black pixels in its connected
region, including itself; Shift out. (Notice that after cycle t = 3n, the nth

slice will be output, and all pixels that are output will have their correct �nal
labels.)

Theorem 5 Given an n � n digitized image, it can be labeled on the word-
model (bit-model) systolic recon�gurable mesh of size n2 using only a small �xed
(�(logn)) number of broadcasts per cycle, and outputting the image in lockstep
fashion, totalling 3n cyles including a static phase.



Parallel Processing Letters

3.5.2. Algorithm 2:

The algorithms we have presented thusfar take the input from the left and output
the results to the right. However, in this algorithm, the SRM takes its input from
the left and produces output to the top.

1. At time i, shift the entire image to the right while inputting column n� i+1.
Create a connected bus over every connected region. Next, every processor in
column 1 of the SRM that contains a black pixel broadcasts the value n�i+1 to
be stored as CL for its connected region. If CR = 0 for a component receiving
a broadcast, then set CR to CL. If CR 6= 0 for a component, then use bit
polling to �nd the minimum of the currently stored CR's over the connected
region and store that value as CR; (After cycle t = n, the nth column has been
input, and CL and CR have been determined for every connected component.)

2. During cycle n + i, the ith row of the image will be output from top as
follows: All processors in row i containing an upper boundary black pixel
(white neighbor to its top) with the value of RT=0, broadcasts the value i
to be stored as RT in their connected regions; Shift the image to the top.
(After cycle t = 2n, the nth row-slice is output to the top with the correct
�nal labels.)

Theorem 6 Given an n� n digitized image, it can be labeled on the bit-model
systolic recon�gurable mesh of size n2 using only �(logn) number of broadcasts per
input and preprocessing cycle, eliminating the static phase, and outputting the image
in lockstep fashion from the top.

3.5.3. Algorithm 3:

This algorithm is quite di�erent from those that have appeared earlier in this paper
in that there is a nontrivial input and preprocessing phase, as well as a nontrivial
output and postprocessing phase. The component label will be represented as <
CL; CR; T >, where CL is the index of the leftmost column containing a pixel of
the component, CR is the index of the rightmost column containing a pixel of the
component, and T is used to break ties in the case of distinct �gures with the
same CL and CR values. CL will be computed for every pixel during the input
and preprocessing phase of the algorithm. CR will be computed for every pixel
during the output and postprocessing phase of the algorithm. Since a number of
�gures can occupy the same leftmost and rightmost column of the image, for such
�gures, a tie-breaking scheme will be used to determine T during the output and
postprocessing step.

Each input and preprocessing cycle consists of the following.

1. In lockstep, shift the image to the right while inputing the next column of
data into the �rst column of the SRM.

2. Initialize the component labels for all pixels now in column one of the SRM
to < 0; 0; 0 >.



The Systolic Recon�gurable Mesh

3. All processors that currently hold a black pixel of the image, connect their
bus to all neighboring pixels that also maintain black pixels. The result is
that there is a subbus over all �gures with respect to the restriction of the
image that has thusfar been input.

4. Exploiting the concurrent write capability, all processors in the �rst column of
the SRM now broadcast their column (with respect to the entire image) label.
Note that during cycle c, this is column n � c + 1. All processors receiving
such a value, store this in CL, potentially replacing a previous value.

After n of these simple input and preprocessing cycles, all pixels know CL,
the leftmost column of any pixel in their connected component. Both CR and T

will be determined during the output and postprocessing phase. Each output and
postprocessing cycle is concerned with those processors maintaining pixels in the
last column of the SRM that have not previously received their �nal component
labels. For such processors, the output and postprocessing cycle consists of the
following.

1. All such processors that are currently responsible for a black pixel of the image,
connect their bus to all neighboring pixels also maintaining black pixels. The
result is that there is a subbus over all �gures with respect to the restriction
of the image that remains in the SRM.

2. Exploiting the concurrent write capability, all processors in the last column of
the SRM now broadcast the column (with respect to the entire image) label
of their pixel. All processors receiving a value store this in CR. Again, note
that at output cycle c, this label is n� c+1. All the processors that have not
previously set the value of CR receive this value and store it in CR.

3. Unfortunately, multiple unique �gures may now have the same component
labels in terms of CL and CR. The labels are disambiguated as follows.

(a) Every processor in the last column that contains a black pixel connects
its bus to its northern processor if and only if that processor maintains a
black pixel. In a similar fashion, every processor in the last column that
contains a black pixel connects its bus to its southern processor if and
only if that processor maintains a black pixel. Next, perform two bus
broadcast operations in the last column of the SRM over these subbusses
so as to identify the topmost and bottommost pixels in every connected
component over the restriction of the image to this last column.

(b) Each such processor in the last column of the SRM that represents a pixel
in the image at position (i; j) prepares a record (CL; CR; i; j; T ). (Notice
that all such records have identical values for j, which is included in
the record for consistency.) Sort these, fewer than n, records using the
integer packing result of [35]. After sorting, all records with identical
CL and CR values will appear in contiguous positions in the last column
ordered by their original position.



Parallel Processing Letters

(c) For each top/bottom pair (which are in adjacent processors in the last
column of the SRM) representing identical labels, the bottom processor
will broadcast a bit and observe whether or not this bit is received by its
mate. This operation is somewhat intricate, involving several row and
column broadcasts. This is done by �rst moving the labels back to their
original unsorted location, and then using the standard technique of odd-
even bus splitting, the bits are broadcast to �nd the topmost-bottommost
pair of each group having identical CL and CR �elds.

(d) Finally, move the labels back, and perform a bus-splitting-and-broadcast
operation over the ordered set of data in the last column so as to broad-
cast a processor ID to be used as the T value in disambiguating labels
with identical CL and CR �elds.

4. In lockstep, shift the image to the right so as to output the next column of
data (pixel and label information).

It should be noted that there is no static stage in this algorithm. However, the
cost of the output and postprocessing stage, while asymptotically constant, requires
a non-trivial amount of work and is primarily of theoretical interest.

Theorem 7 Given an n�n digitized image, it can be labeled on the word-model
systolic recon�gurable mesh of size n2 using only a �xed number of broadcasts per
input and preprocessing cycle, eliminating the static phase, and outputting the image
in lockstep fashion with using O(1) sorting.

4. Conclusion

In this paper, we introduced a novel architecture, namely the systolic recon�gurable
mesh (SRM), which is motivated by combining the concepts of massively parallel
recon�gurable architectures with that of attached systolic processors designed to be
used in specialized domains. E�cient algorithms were developed that (i) process
the data upon input and output, while avoiding any processing during a static
state, (ii) consist of simple operations during each phase of processing, and (iii)
have low constants and minimal total execution time. We presented algorithms
for intermediate-level image processing tasks including histograming, connectivity,
convexity, and proximity. For labeling an n� n image, we presented and discussed
three di�erent algorithms. Open problems include a generic (one without a sorting
routine and requiring 2n cycles only) labeling algorithm for the word-model and
a convex hull algorithm that operates e�ciently on an image containing multiple
�gures. Also, an interesting extension of these problems would be to investigate the
situation where the image is larger than the mesh.

5. Acknowledgments

We would like to thank the referees for their valuable comments. Also thanks to
Mr. Walter Yogi for his help in searching the literature.



The Systolic Recon�gurable Mesh

[1] H. M. Alnuweiri. Constant-time parallel algorithms for image labeling on a recon�g-
urable network of processors. IEEE Trans. on Parallel and Distributed Systems,
pages 320{326, March 1994.

[2] D Chin, J Pease, F Bernard, H. Taylor, and S Knight. The princeton engine: A
real-time video system simulator. IEEE Transactions on Consumer Electronics,
34(2):285{297, 1988.

[3] R. Cypher, J. L. C. Sanz, and L. Snyder. EREWPRAM and mesh connected computer
algorithms for image component labeling. In Proceedings of the IEEE Workshop
on Computer Architecture for Pattern Analysis and Machine Intelligence, pages
122{128, 1987.

[4] M. J. B. Du�. CLIP4. Special Computer Architectures for Pattern Processing,
pages 65{86, 1982.

[5] Mary M. Eshaghian. Parallel algorithms for image processing on OMC. IEEE Trans-
actions on Computers, 40(7):827{833, July 1991.

[6] Mary M. Eshaghian, K. Kim, G. Nash, and D. B. Shu. Implementation and appli-
cation of a gated connection network in image understanding architecture. In H. Li
and Q. Stout, editors, Recon�gurable Massively Parallel Computers, pages 64{87.
Prentice Hall, 1991.

[7] Terry J. Fountain, K.N. Mathews, and Michael J. B. Du�. The CLIP7A image
processor. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(3):310{319, 1988.

[8] Dan W. Hammerstorm and Daniel P. Lulich. Image processing using one-dimensional
processor arrays. Proceedings of the IEEE, 84(7):1005{1018, 1996.

[9] M. C. Herbordt, C. C. Weems, and M. J. Scudder. Nonuniform region processing
on SIMD arrays using the coterie network. Machine Vision and Applications,
5(2):105{125, 1992.

[10] J. -W. Jang, H. Park, and V. K. Prasanna. A fast algorithm for computing histograms
on a recon�gurable mesh. In Proc. 4th Symposium on Frontiers of Massively
Parallel Computation, pages 244{251. IEEE, October 1992.

[11] J. -F. Jenq and S. Sahni. Histogramming on a recon�gurable mesh computer. In Proc.
6th International Parallel Processing Symposium, pages 425{432. IEEE, 1992.

[12] R. Miller, V. K. P. Kumar, D. I. Reisis, and Q. F. Stout. Parallel computations on
recon�gurable meshes. IEEE Trans. on Computers, 42(6):678{692, June 1993.

[13] R. Miller and Q. F. Stout. Parallel geometric algorithms for digitized pictures on mesh
connected computers. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, March 1985.

[14] R. Miller and Q. F. Stout. E�cient parallel convex hull algorithms. In IEEE Trans-
actions on Computers, pages 1605{1618, December 1988.

[15] V. K. Prasanna-Kumar and M. Mary Eshaghian. Parallel geometric algorithm for
digitized pictures on mesh of trees. In Proc. of IEEE International Conference on
Parallel Processing, pages 270{273, 1986.

[16] Lorenz A. Schmitt and Stephen S. Wilson. The AIS-5000 parallel processor. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(3):320{330, 1988.

[17] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of �eld pro-
grammable gate arrays. Proceedings of the IEEE, July, 1993.

[18] S. Hauck. The roles of FPGAs in programmable systems. Proceedings of IEEE, 86,
1998.

[19] S. Schaumont, I. Verbauwhede, K. Kuetzer, and M. Sarrafzadeh. A quick safari
through the recon�guration jungle. Proceedings of the 38th Design Automation
Conference, 2001.



Parallel Processing Letters

[20] Xilinx Inc. Xilinx platform FPGAs. www.xilinx.com.
[21] K. Q. Li and V. Y. Pan. Parallel matrix multiplication on a linear array with recon-

�gurable pipelined bus system. IEEE Transactions on Computers, 50(2):519{525,
2001.

[22] Mary M. Eshaghian and Lili Hai. An optically interconnected recon�gurable mesh.
Journal of Parallel and Distributed Computing, 61:737{747, 2001.

[23] Mary M. Eshaghian and Lili Hai. A glance at VLSI optical interconnects: From the
modelings of the 1980s to today's MEMS implementations. Handi-book on Innova-
tive Computing, 2004-2005.

[24] K. Bondalapati. Modeling and Mapping of Dynamically Recon�gurable Hybrid
Architectures. PhD thesis, University of Southern California, 2001.

[25] K. Bondalapati and V. K. Prasanna. Recon�gurable computing: Architectures, models
and algorithms. Current Science, 78(7):828{837, 2000.

[26] Kiran Bondalapati and Viktor K. Prasanna. Recon�gurable computing systems. Pro-
ceedings of IEEE, July 2002.

[27] R. Miller, V. K. P. Kumar, D. Reisis, and Q. F. Stout. Meshes with recon�gurable
buses. Proc. 15th MIT Conference on Advanced Research in VLSI, pages 163{
178, March 1988.

[28] H. Li and M. Maresca. Polymorphic-torus network. IEEE Trans. on Computers,
38(9):1345{1351, September 1989.

[29] C. C. Weems, S. P. Levitan, A. R. Hanson, and E. M. Riseman. The image un-
derstanding architecture. International Journal of Computer Vision, 2:251{182,
1989.

[30] K. Nakano. A list of papers on algorithms for recon�gurable architectures. Parallel
Processing Letters, 5(1):111{124, 1995.

[31] A. Condon, R.E. Ladner, J. Lampe, and R. Sinha. Complexity of sub-bus mesh
computations. Technical Report 93-10-02, Dept. of CS&EE, U. of Washington, 1993.

[32] R. Miller and Q.F. Stout. Parallel Algorithms for Regular Architectures: Meshes
and Pyramids. The MIT Press, Cambridge, Mass, 1996.

[33] R.L. Graham. An e�cient algorithm for determining the convex hull of a set of points
in the plane. Information Processing Letters, 1:132{133, 1972.

[34] B. F. Wang and G. H. Chen. Two-dimensional processor array with a recon�gurable
bus system is at least as powerful as crcw model. Information Processing Letters,
36:31{36, 1990.

[35] S. Olariu, J.L. Schwing, and J. Zhang. Integer problems on recon�gurable meshes,
with applications. Journal of Computer and Software Engineering, 1:33{45, 1993.


