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Abstract

We give a sequential algorithm for approximating a given polygon P by another polygon P’
such that P’ is a “good approximation” of P, and has fewer edges. We formalize the notion of
a “good approximation” in terms of the Hausdorff metric and show through experimentation
that the application of this metric leads to visually satisfying approximations. Our algorithm
modifies that of [Leu and Chen] to produce output that better approximates the input.
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1 Introduction

In [Leu and Chen, 1988], a sequential algorithm is given for replacing a polygon P by another
polygon P’ such that P’ has fewer edges than P. The algorithm can be implemented in optimal
©(n) time, where n is the number of edges of the input polygon P. The basic idea of this algorithm
is as follows. Repeatedly, a run of 2 or 3 consecutive edges that differs from its chord (i.e., the line
segment that connects the extreme endpoints of the run) by less than a pre-specified tolerance value
(if such a run exists) is replaced by its chord. The process terminates when either the resulting
polygon has a small number of remaining edges or there are no more runs that differ from their
chords by more than the tolerance value. The replacement of runs that deviate only slightly from
linearity by their chords can be regarded as a technique of “smoothing” or “noise reduction.” The

algorithm produces good results for a large class of input polygons.
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Unfortunately, if the repetition of the smoothing step is not properly controlled, the result of
this smoothing process may not be a good approximation to the original polygon P. In this paper
we formalize the notion of a “good approximation” in terms of the Hausdorfl metric dgy [Nadler,
1978], i.e., we require that neither P nor P’ have a point whose distance to the nearest point of the
other polygon is larger than the tolerance value 7. We show that the algorithm of [Leu and Chen]
may result in large values of dg (P, P'), and we show how to modify this algorithm so that dg (P, P')

" in terms of its asymptotic efficiency.

remains small. Our algorithm pays a price for its “accuracy’
That is, the running time of our algorithm is O(n + r?), where r = |E(P)| — |E(P")]| is the number
of edges removed from P to obtain P’. In practice, however, we often find that our algorithm is
actually faster than that of [Leu and Chen], as our modification more carefully controls the number
of “global” smoothing steps.

The paper is organized as follows. In Section 2, we define terminology. In Section 3, we present
the algorithm of [Leu and Chen], an example that demonstrates how this algorithm can produce
unsatisfactory results, and our algorithm, which improves upon the output of that of [Leu and Chen].

In Section 4, we give some experimental results, comparing the outputs of the two algorithms on

the same inputs.

2 Preliminaries
2.1 Arc Terminology

Much of the terminology we use is taken from [Leu and Chen]. Input to the problem includes
a circularly-ordered set of vertices V' = {vg,v1,...,v,-1} of a polygon, and a tolerance value 7.
Output is a circularly-ordered subset of V. Vertices are represented by their Cartesian coordinates.
All vertices and line segments are assumed to be in the Euclidean plane E?2.

The maximum deviation of a polygonal arc from its chord occurs at one of the vertices of the
arc. Let {P,Q,R,S} C V. For an arc of the form PQ U QR, the maximum arc-to-chord deviation
is just the distance from @ to PR. Figure 1 shows an arc of three line segments, PQ, QR, and RS,
and the arc’s chord, PS. Let d; and dy be, respectively, the distances from Q to PS and from R

to PS. Without loss of generality, assume all of PQ), RS, and PS are non-vertical, with slopes m,



Figure 1: Computing arc-to-chord deviation

ms, and my, respectively. Then d; and ds can be computed via

- — —
dy = |PQ|sin(|arctanmg — arctanmy|) if the perpendicular from @ to PS meets PS;
min{|PQ|, |QS|} otherwise;

dy = { |RS|sin(|arctanmy — arctanms| if the perpendicular from R to <P_5: meets PS;
min{|PR|, |RS|} otherwise.

The mazimum arc-to-chord deviation between arc PQ UQRU RS and its chord PS is max{d;,d>}.

A local minimum deviation arc (LMDA) is an arc A of 2 or 3 segments whose maximum arc-
to-chord deviation is less than or equal to those of its neighboring arcs, where a neighboring arc
of Ais an arc B # A of 2 or 3 segments such that A N B is a segment or a union of 2 segments.
In Example 3.1, we have neighboring arcs that are tied according to the criteria above, so we use
the following tie-breakers. Suppose neighboring arcs A and B have equal maximum arc-to-chord

deviations that are less than or equal to those of all their neighbors.
e If A has 2 segments and B has 3 segments, let A be an LMDA.

e If A and B have the same number of segments and A has a vertex that precedes all the vertices

of B in the circular order of the input, then A is an LMDA.
e If Ais an LMDA, then B is not an LMDA.

It follows from the second tie-breaker that (contrary to the assertion of [Leu and Chen]) the

output is sensitive to which vertex is first in the circular order of input. (If all neighboring arcs of 2



or 3 segments have distinct maximum arc-to-chord deviations, then the assertion of [Leu and Chen)]
that the output is independent of the starting point, is correct.)

The first two tie-breaker rules are arbitrary, and we have constructed Example 3.1 with them
in mind. Were we to use other tie-breaking rules, Example 3.1 could be modified accordingly to

illustrate the undesirable behavior of the algorithm of [Leu and Chen].

2.2 Hausdorff Metric

The Hausdorff metric measures how well two geometric objects A and B approximate each other
with respect to their positions in a metric space. Roughly, A and B are close in the Hausdorff metric
if and only if neither has a point that is far away from a nearest point of the other.

In particular, let d be the Euclidean metric for E?. Let ¢ > 0 and let A be a nonempty subset
of E2. The “c neighborhood of A in E2,” denoted Ny(e, A), is defined to be

Ny(e, A) = {z € E? | d(z,a) < ¢ for some a € A}.

If z € E?, let
d(z,A) = inf{d(z,a) | a € A}.

Definition 2.1 [Nadler, 1978] Let A and B be nonempty, bounded, and closed subsets of E2. The
Hausdorff distance dg(A, B) is

dp(A,B) =inf{e > 0| A C N4(e,B) and B C N4(e,A)}. 1

Alternately, we have the following.

Theorem 2.2 [Nadler| di(A, B) = max{sup,¢ 4 d(a, B),supycp d(b,A)}. &
The function dg is a metric for nonempty, bounded, closed subsets of E? [Nadler].
3 Algorithms

3.1 The Algorithm of Leu and Chen

The algorithm of [Leu and Chen] is given below, somewhat restated. We assume the input includes

the vertices vg,v1,...,vy—1 in circular order, and the tolerance value 7. If, during a given itera-



tion of the outer loop, the remaining vertices are, in circular order, vj,,...,vjy_,, then arithmetic

expressions in subscripts are understood to be mod N.

Let N =n;
IF N > 6 {N is the number of edges in the boundary} THEN
REPEAT {assume the remaining vertices are, in circular order, vj,,...,vjy_, }
FORi:=0TO N —1DO

Compute the maximum arc-to-chord deviations of the arcs

A; = 05,05, U5, 05, and B; = A; UDj, L 05, 5
ENDFOR;
FOR i:=0TO N —1DO
IFA; or B; is an LMDA whose maximum arc-to-chord deviation is less than 7,
THEN mark the LMDA for removal at the end of the iteration
ENDFOR;
replace the LMDAs marked by their respective chords and
decrement the value of NV accordingly
UNTIL N <6 OR no LMDAs are removed
ENDIF {N > 6}
ELSE {N < 6} consider all arcs of 2 or 3 edges, removing one

(if such exists) with smallest maximum arc-to-chord deviation < 7

At first glance, the algorithm appears to require O(n?) time. However, we observe that only
values of i corresponding to neighbors of arcs removed on a given iteration need be considered on
the next iteration. The first iteration of the REPEAT loop requires ©(n) time. Since O(n) arcs are
removed by a performance of the entire algorithm, it follows that all iterations of the REPEAT loop
beyond the first require O(n) time. Thus, the algorithm may be implemented in ©(n) time.

3.2 An Example of Poor Performance

If P’ is the output that results from applying a polygonal approximation algorithm to a polygon P

using 7 > 0 as a bound for the tolerance of deviation in replacement of an arc by its chord, it is



desirable that
du (P, Pl) <T.

The following example shows that this goal is not achieved by the algorithm presented above. We
say the remaining polygon P’ is determined by a circularly ordered subset {vg, v1,...,Vm—1} of its

. . . . - -1 - @000
vertices if all the vertices of P’ are contained in U?io Vi U(it1) mod m-

Example 3.1 Suppose s is a positive integer, M is a positive constant, 0 < 7 < M /12 (where T is

the error tolerance), and the input polygon P is determined by the following vertices.

L, = (@r+(-1)t+2r k) g =0,1,...,2s;
Ry = (M+(-1)F2r, &), k=0,1,...,2s;

T, = (27,s7);

My = (2?}\—?;2_:27 ?%)7

MR = ( 3 z a&?TT)a

Tg = (M7ST)7

where a circular order of these vertices is

RO:Rla .. ‘JRQSJTRJMRJMLJTL)L2SJL25717 . '7L0-

Suppose other vertices of P are as follows. Each of the line segments La;Lo;11 and Lojy1La;1o has

221 _ 1 distinct vertices of P with x— coordinates satisfying T < x < 37,3 =0,...,5—1. Each of

the line segments Ra;Ro;+1 and Raiy1Raiq2 has 2(29) _ 1 distinct vertices of P with x—coordinates
satisfying M — 17 <oz < M +7,1=0,...,5 — 1. Then the algorithm outputs a polygon P' with §
or 6 vertices in the circular order

R2S;TR;ML;TL;L285

(respectively,

R257 TR: MR; ML7 TL; L2s);
and dg (P, P') = ©(7logn), where n is the number of vertices of P. See Figure 2.

Proof (Sketch): It may happen that on the first iteration, the vertex Mg is removed. This
depends on the relation among M, s, and 7. In Figure 2, we do not show Mg removed. In the

following, we assume without loss of generality that Mg is not removed.



The behavior of the algorithm on this example is as follows. On odd-numbered iterations,
the bottom of the remaining polygon P’ is shifted upward on the right side. On even-numbered
iterations, the bottom of P’ is shifted upward on the left side.

We proceed by induction on even values of j, the number of iterations of the REPEAT loop.
For j = 0, the following hold. The remaining polygon is determined by the subset of its vertices, in
circular order,

{Rijj+17 .- ')R2SJTR7MRyML7TL7L2SJL23717 .- JLJ}

Each of the line segments Ly; Lair1 and Logy1 Loiyo has 227t1=9) — 1 distinct vertices of P with
z—coordinates satisfying 7 < < 37, i = j/2,...,s — 1. Each of the line segments Ry; Ro;y1 and

Rait1 Raigo has 2297 —1 distinct vertices of P with z—coordinates satisfying M —7 < 2 < M +7,

i = j/2,...,s — 1. In particular, the line segments R; R;y1 and R;y1 Rji2 have no remaining
vertices of P except for their endpoints.

Suppose the above hold after j iterations, for some even j such that 0 < j < 2s — 1. On the

(j + 1)t" iteration, the following occur. The segments Ly; Loi+1 and Lg;1q Laiqe each mark 2(2i—7)

LMDAs of 2 segments each (each such LMDA has maximum arc-to-chord deviation of 0), leaving

each of Lo; Loir1 and Logyq Logye with 2(2779) — 1 vertices of P that have z—coordinates satisfying

T<x<3r,i=j/2...,8— 1. Similarly, the segments Ra; R2;+1 and Ra;y1 Ra2iy2 each mark

2(2i-3-1) T, MDASs of 2 segments each (each such LMDA has maximum arc-to-chord deviation of 0),

leaving each of Ra; Raij+1 and Rajr1 Roiye with 2(2i—i—1) _ 1 vertices of P that have z—coordinates

satisfyingM—T<m<M+T,i:%-}-1,...,3—1. Also, the arc

Lj RjUR; Rjy1URjp1 Rjyo

is marked as an LMDA and replaced by its chord. Thus, at the end of this iteration, the remaining

polygon is determined by the circularly ordered subset of its vertices

{Rj+2a v 5R233TR3 MR; MLaTL;L2saL2s—17 .. 7LJ}

On the (j + 2)t" iteration, the following occur. The segments La; Lo; 1 and Lo 1 Lojyo each

mark 2(2=7=1) LMDAs of 2 segments each (each such LMDA has maximum arc-to-chord deviation of

0), leaving each of Lo; Loi+1 and Lajrq Laip with 2(273=1) 1 vertices of P that have z—coordinates



satisfying 7 < £ < 37,1 = % +1...,s— 1. Similarly, the segments Rg; Ro;11 and Ra;jt1 Raiy2 each

mark 2(2-7-2) LMDASs of 2 segments each (each such LMDA has maximum arc-to-chord deviation of

0), leaving each of Ro; R2it1 and Ra;y1 Ry with 2(2i-3-2) _ 1 vertices of P that have z—coordinates

satisfyingM—T<x<M+T,i:%—}—l,...,s—l. Also, the arc

Rjp2 LjULj Ljya U Ljr Ljto

is marked as an LMDA and replaced by its chord. Thus, at the end of this iteration, the remaining

polygon is determined by the circularly ordered subset of its vertices
{Rj+2a HE 3R2s; TR; MR, MLaTL; L2s; L23—17 ceey Lj+2}-

This concludes the induction.
After 2s iterations, the remaining vertices of P’, in circular order, are Ry, Tr, Mg, M1, TL, Las,

and
ST

du(P,P') = du(Lo Ro,L2s Ry,) = 5

Tt is easily seen that s = ©(logn), so dg(P,P') = O(rlogn). A

A cruder measure of the closeness of P and P’ is a comparison of their diameters. It is desirable

that P and P’ have approximately equal diameters. However, in the previous example, given any

diam(P')
diam(P)

€ > 0, we can make < % + ¢ by choosing s so that s7 is sufficiently large compared to
M. Similar observations can be made about a comparison of the areas of P and P’.

In the example above, the use of a polygon determined by a proper subset of its vertices was a

notational convenience. We could have replaced the vertices interior to the arcs R; R;11 and L; L;
by vertices slightly off these segments such that no 3 consecutive vertices were collinear, and still

have obtained an example in which dg (P, P') = O(rlogn).

3.3 Our Algorithm

The example discussed above shows that the algorithm of [Leu and Chen] can produce an output
polygon P’ such that dg (P, P') is unacceptably large. In the following, we describe a modification
that avoids this problem. In the algorithm of [Leu and Chen], each LMDA is checked only for the



distance(s) of its internal vertex (vertices) to its chord. Suppose the polygonal arc PQ U QR is an

LMDA (a similar discussion applies to arcs of the form PQ U QR U RS), where
P=v;, Q=vj, R=wg, |j—i>1, |k—j| >1,
and previous iterations of the REPEAT loop have already removed the vertices
V' = {0it15- - 0j—1, V41, -« s Vk—1 }-

By considering the distances of the members of V', as well as that of @, from the chord PR in
determining LMDAs, we make sure that the output polygon P’ satisfies dig (P, P') < .

We feel there is another way in which the decision of which LMDAs should be replaced by their
chords could be improved. The union of an LMDA and its chord bounds a region R that is a triangle,
or the union of 2 triangles, or a quadrilateral. If R is too large (in area) relative to the entire image
I containing P, the LMDA should not be replaced by its chord. There are several reasonable ways
to determine what is “too large.” We have chosen to use the following. We assume there is another
input value «, a positive number representing a relative area tolerance. Let A(X) denote the area
of X. Let Br be a minimal-area rectangle containing R. We say R is a — large if

A(Br)
A(D)

> a.

Notice that whether or not R is a—large can be determined, for a given LMDA, in ©(1) time.
With these considerations, we give the following algorithm. If, during a given iteration of the

outer loop, the remaining vertices are, in circular order, vj,,...,vjy_,, then arithmetic expressions

in sub-subscripts (e.g., i + 1 in vj,,,) are understood to be mod N, while arithmetic expressions in

first order subscripts (e.g., j + 1 in v;;1) are understood to be mod n.

Let N =n;
IF N > 6 {N is the number of edges in the boundary} THEN
REPEAT {assume the remaining vertices are, in circular order, vjy,...,vjy_,}
IF this is the first iteration THEN FOR i :=0TO N —1
ELSE FOR all ¢ such that there is a vertex v, removed during the previous

iteration such that v, is between (in the circular order of P)



Vj;
DO

Compute the maximum arc-to-chord deviations of the arcs

and vj,_,, or v;,,, and vj,,,, or v;_, and vj,,, {1}

A; =05,05,,, VD5, 105, and By = A; U5, 05, 5
ENDFOR;
IF this is the first iteration THEN FOR i :=0 TO N —1
ELSE FOR all ¢ such that there is a vertex v, removed during the previous
iteration such that v, is between (in the circular order of P)
Ui
DO

IF A; or B; is an LMDA of maximum arc-to-chord deviation less than 7

and vj,_,, or v;,,, and vj,,,, or v;,, and vj,,, {2}

AND whose chord 75,75, ,, (respectively, 75,05, ;) is less than 7
from each member of {vj,,vj,41,--.,Vj,.} (vespectively, {vj,,vj,41,---,Vji15})
AND such that the region bounded by the LMDA and its chord is not a — large
THEN mark the LMDA for removal at the end of the iteration
ENDFOR;
replace the LMDAs marked by their respective chords;
make a list of the indices of vertices removed on this iteration; {3}

decrease N by the number of vertices removed on this iteration

UNTIL N <6 OR no LMDAs are removed
ENDIF {N > 6}
ELSE {N < 6} consider all arcs of 2 or 3 edges, removing one

(if such exists) with smallest maximum arc-to-chord deviation < 7

such that the region bounded by the LMDA and its chord is not a—large

from P to obtain the output. Since r = O(n), this gives a running time of O(n?).

We note that the (remaining) vertices are considered in circular order, so that the list constructed
at line {3} is ordered without need for a sort step. It follows that identifying the next value of ¢
such that there is a v, satisfying the condition of {1}, {2} may be done in ©(1) time. Hence it is

easily seen that this algorithm runs in O(n + r?) time, where r is the number of vertices removed

10

However, by



comparing an LMDA A with vertices v, removed in previous iterations whose order in P is between
vertices of A, we often find that fewer iterations are necessary than for the ©(n) time algorithm of

[Leu and Chen], so that on a large class of examples, our algorithm is the faster one.

4 Experimental Results

We have implemented both of the algorithms discussed in this paper on a Sun Workstation, using
the C language. We give several figures, starting with Figure 2, that compare the results of the two
algorithms on the same inputs. We feel that for several of the examples, our algorithm produces
significantly better output. The figures show output edges as darker line segments than those
input edges not coinciding with output edges. Subfigures labeled “Original” show the output of the
algorithm of [Leu and Chen]; those labeled “Improved” show the output of our algorithm. Running
times are measure in CPU seconds. “Improved” figures in which we show a = 0 are examples in
which we did not use a relative area tolerance.

Figure 2 compares the two algorithms on an instance of Example 3.1. We observe that on all
instances of Example 3.1 in which s > 2, our algorithm leaves P’ with a lowest edge of Ly Ry, while
the algorithm of [Leu and Chen] leaves P’ with a lowest edge of Las Ras.

Figure 3 compares the two algorithms on an almost-circular polygonal input. We see that our
algorithm gives output that better approximates the input with respect to dg, the more so when
we use a relative area tolerance.

On the irregular input of Figure 4, the two algorithms yield the same output when a relative
area tolerance is not used in our algorithm. When we use a relative area tolerance, our algorithm

produces output that is slightly better in approximating the input with respect to dg.

5 Further Remarks

We have given an algorithm for smoothing a polygon by removing interior vertices of arcs that
differ from their chords by less than a small pre-specified tolerance. Our algorithm improves on
that of [Leu and Chen] in the sense of keeping the Hausdorff distance between input and output

small and in the sense of not making large changes in area. The algorithm of [Leu and Chen] can

11



be implemented in optimal ©(n) time, while ours requires O(n + r?) time, where r is the number of
input vertices removed by the algorithm. However, in practice, our algorithm often runs faster than

that of [Leu and Chen).
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Figure 2: The example of Section 3.2, using s = 5, M = 250, n = 2052
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Figure 3: Comparison on almost-circular input
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Figure 4: Comparison on irregular input
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