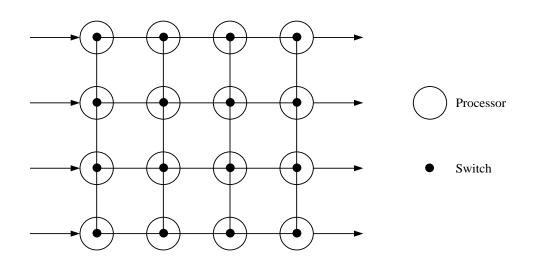
The Systolic Reconfigurable Mesh

Mary M. Eshaghian

New Jersey Institute of Technology

Russ Miller

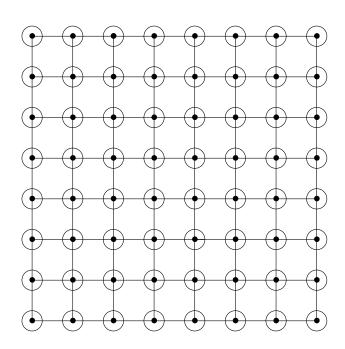

State University of New York at Buffalo

The Reconfigurable Mesh

- $n \times n$ array of processors
- Each processor has *dynamic* and *local* control over its switch setting
- Unit-delay broadcast
- Options for switch model
- Options for communication and processor computation model

The Systolic Reconfigurable Mesh

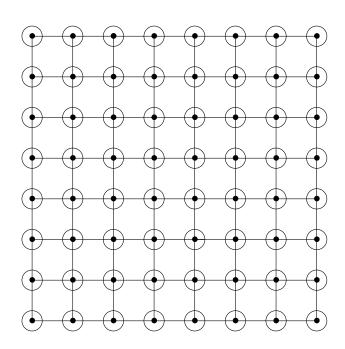
- Practical model
- Restricted domain
- Input from the left & Output to the right
- Phase 1: Input and Preprocessing
- Phase 2: Static
- Phase 3: Output and Preprocessing


Designing Algorithms for the SRM

- Minimize constants
- Preserve the systolic nature of the process
- Eliminate the static stage
- Starting point:
 - Simulate mesh algorithms
 - Simulate reconfigurable mesh algorithms

Histogram

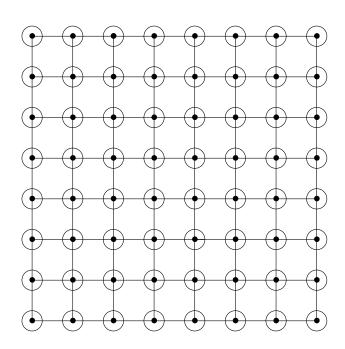
Input: all values in $1 \dots n$ *Output*: result of *i* maintained in SRM(i, n)


- 1. Input the next column of data
- 2. Sort these n data items in $\Theta(1)$ time
- 3. Bus split in column and sum number of items of each value
- 4. Broadcast partial sums to diagonal
- 5. Broadcast from diagonal to proper row
- 6. Row broadcast and add to running sum

Convex Hull

Input: $n \times n$ binary image *Output*: 'marked' image

- 1. Shift image to right and input next column
- 2. Bus split in column 1 to identify N and S pixels
- 3. Mark N and S as extreme points
- 4. Every marked pixel decides whether or not it is still an extreme point
- 5. Identify and record extreme points preceding ${\cal N}$ and ${\cal S}$



Component Labeling

Input: $n \times n$ binary image Output: labeled image Labels: $< C_L, C_R, C_T >$ Flow: in from left, out to top

- 1. Input and Preprocessing:
 - (a) Lockstep shift to right
 - (b) Create connected subbus over every figure
 - (c) Broadcast C_L
 - (d) Bit-polling to resolve C_R
- 2. Output and Postprocessing:
 - (a) Create connected subbus over every figure
 - (b) If $C_T = 0$ then broadcast row label as C_T
 - (c) Lockstep shift up

Input and Preprocessing step: $\Theta(\log n)$ time. Output and Postprocessing step: $\Theta(1)$ time.

Summary of Results

Problem	Model	Static stage	Time complexity of a cycle	Total number of cycles
Histogram	Word	No	O(1) (includes sorting)	N+1
	Bit	No	O(log N)	N+1
Connex Hull	Word	No	O(1)	2N
	Bit	No	O(log N)	2N
Min/Max	Word	No	O(1)	N+1
	Bit	No	O(log N)	N+1
Labeling	Word	Yes	O(1)	3N
	Bit	No	O(log N)	2N
	Word	No	O(1) (includes sorting)	2N
(Restricted Image)	Word	No	O(1)	2N

Conclusion

- 1. Practical Model
- 2. Heterogeneous Computing
 - (a) Image Understanding Architecture
 - (b) Integrated Stand-Alone
- 3. Not General Purpose