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Motivation

e \Wealth of algorithms: fine-grained models.
e Commercial machines: coarse-grained.
e Fine-grained algorithms do not port well.

e Fine-grained algorithms often tied to interconnection net-
WOrK.

e Consider

— scalable algorithms
— interconnection-independent environment

— geometric problems

Russ Miller 3 PDCS'96



Portable Models

e BSP [Valiant90]: supersteps consist of
a) local computation,
b) global communication, and then
C) barrier synchronization.
Input and output pool for each PE.

e L ogP [Culler93]. PE is either in operational or stalling mode
at each step. Operational: either a) local computation, b)
receive message, or ¢) submit a message.

e C3 [Hambrusch95]: considers the complexity of computation,
the pattern of communication, and the potential congestion
that arises during communication.

Russ Miller 4 PDCS'96



Coarse Grained Multicomputer (CGM)

e CGM(n,p) consists of p processors, each with Q(%) local
memory, where Q(%) is “considerably larger” than ©(1).

e Arbitrary interconnection network.
e Examples: Cray T3D, IBM SP2, Intel Paragon, TMC CM-5

e For determining time complexities, consider both local com-
putation time and interprocessor communication time.
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Previous Results on CGM

e Area of union of rectangles [Dehne93]
e 3D-maxima [Dehne93]
e 2D-nearest neighbors of a point set [Dehne93]

e Lower envelope of non-intersecting line segments in plane
[Dehne93]

e 2D-weighted dominance counting [Dehne93]

e Randomized 3D convex hull [Dehne95]
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Fundamental Algorithms: Previous Results
(Sort-based)

Tsort(n,p): the time required to sort ©(n) data on a CGM(n,p).

Tsort(n,p) time on a CGM(n,p) [Dehne]:

e Segmented broadcast: For indices 1 < j1 < jo < ... < jg <
p, each PE P; broadcasts a list of % data items to PEs

Piigtse s sz'-|-1'
e Multinode broadcast: Every PE sends the same ©(1) data
to every other PE.

e Total exchange: Every PE sends ©(1) data (not necessarily
the same) to every other PE.
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Fundamental Algorithms: New Results
(Sort-based)

Tsort(n,p) time on a CGM(n,p):

e Permutation exchange: Given a permutation o, every PE F;
sends a list of > data items to PE P, ;).

e Semigroup operation: Let X = {xn} be distributed evenly
among the PES. Let o be a unit-time, associative, binary

operation on X. Compute 1 oxo0...0Tp.
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Fundamental Algorithms: New Results
(Sort-based)

Tsort(n,p) time on a CGM(n,p):

e Parallel prefix: Let X = {x,} be distributed evenly among

the PEs. Let o be a unit-time, associative, binary operation

on X. Compute all n members of {x1, x102p, ..., T10x50
...oxp}.
e Merge: Let X and Y be lists of ordered data, each evenly
distributed among the PEs, with | X|+|Y| = ©(n). Combine
these lists so that X UY is ordered and evenly distributed

among the PEs.
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Fundamental Algorithms: New Results
(Sort-based)

e Parallel search: Let X = {xm} and Y = {yn} be lists, each
distributed evenly among the PEs. Each z; € X searches Y

for a value.
Time: Tsort(m+n,p) ona CGM(m + n,p).

e Formation of combinations: Let X = {z,} andlet £ > 1 be a
fixed positive integer. Form the set of ©(n*) combinations
of members of X that have exactly £ members.

Time: O(Tsort(n*,p)) on a CGM(nF, p).
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Fundamental Algorithms: New Results
(Sort-based)

e Formation of pairs from lists: Let X = {xy} and let Y =
{yn}. Form all pairs (z;,y;), where z; € X, y; €Y.

Time: Tso:(mn,p) on a CGM(mn,p).
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All Rectangles Problem

Defn.: A polygon P is from S C R? if all vertices of P belong to
S. The AR problem is to find all rectangles from S.

Proposition [VKD91]: Let S C R?, |S| =n. Then a solution to
the AR problem has ©(n?logn) output in the worst case.
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Scalable Algorithm for All Rectangles Problem

Theorem: Let S = {vg,v1,...,v,_1} be given as input. Then
the AR problem can be solved in Tsoi(n?logn,p) time on a
CGM(n?logn,p).

Note: A rectangle may be determined by a pair of opposite
sides with nonnegative slope.
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Algorithm: AIll Rectangles Problem

1. Form the set L of all line segments with endpoints in S and
with nonnegative slopes.

2. Sort the members of L so that if /g < 41 < ¥¢> and ({p,4>) is a
pair of opposite sides of a rectangle, then ({g,¢1) and (£1,4>)
are pairs of opposite sides of rectangles.
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Algorithm (cont’d)

3. Using parallel prefix:

— For each ¢ € L, determine the first and last edge in its
group.

— For each ¢ € L, determine First(£), the number of rect-
angles for which 7 is the first edge.

— For each ¢ € L, determine Prec(f), the number of rectan-
gles that precede it.
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Algorithm (cont’d)

4. Using parallel search operations:

— Determine the first side of every rectangle based on the
Prec(f) and First(£) values.

— Determine the second side of every rectangle based on
the Prec(¢) and First(¢) values.
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Lower Envelope

Defn.: Let S be a set of polynomial functions {f,}. The lower
envelope of S is the function

LE(z) = min{f;(z) |i=1,...,n}.

Theorem: Let k£ be a fixed positive integer and let S be a set
of polynomial functions, each of degree at most k. Assume that
the members of S are distributed evenly among the processors.
Then the lower envelope of S may be determined in slightly worse
than linear time and space.
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Envelope-Related Problems

Theorem: Let S be a set of vertically convex polygons in R2
whose boundaries have a total of n line segments. Then the
Common Intersection Problem for S can be solved in slightly
worse than linear time and space.

Theorem: Let S be a system of point-objects, each of which is
in k—motion in RY. Then, as a function of ¢, a nearest member
of S\ {sp} to sop may be described in slightly worse than linear
time and space.

Theorem: Let S ={Py,...,P,_1} be a set of points in the plane
with k-motion. Then the ordered intervals of time during which
a given point P; is an extreme point of hulli(S) can be determined
in slightly worse than linear time and space.
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Maximal Collinear Sets

Defn.: Given a set S of n points in a Euclidean space, find
all maximal equally-spaced collinear subsets of S determined by
segments of any length 4. (The algorithm of [Kahng] runs in
optimal ©(n?) serial time.)

Theorem: Let d be a fixed positive integer. Let S C R%
S| = mn. Then the AMESCS Problem can be solved for S
in Tsort(n2,p) time on a CGM(n2,p).
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Point Set Pattern Matching

Defn.: Given a set S of points in a Euclidean space R4 and a
pattern P c R?, find all instances of subsets P’ ¢ S such that P
and P’ are congruent.

Theorem: The Point Set Pattern Matching Problem in R! can
be solved on a CGM (k(n—k),p) in optimal Tsor:(E(n—Fk), p) time.
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Summary

1. Scalable algorithms on Coarse Grained Multicomputer
2. Fundamental Operations
3. Geometric Problems

4. L. Boxer, R. Miller, and A. Rau-Chaplin, Some scalable paral-
lel algorithms for geometric problems, SUNY-Buffalo, Dept.
of Comp. Sci. Tech. Rept. 96-12 (1996).
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