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Motivation� Wealth of algorithms: �ne-grained models.� Commercial machines: coarse-grained.� Fine-grained algorithms do not port well.� Fine-grained algorithms often tied to interconnection net-work.� Consider{ scalable algorithms{ interconnection-independent environment{ geometric problemsRuss Miller 3 PDCS`96



Portable Models� BSP [Valiant90]: supersteps consist ofa) local computation,b) global communication, and thenc) barrier synchronization.Input and output pool for each PE.� LogP [Culler93]: PE is either in operational or stalling modeat each step. Operational: either a) local computation, b)receive message, or c) submit a message.� C3 [Hambrusch95]: considers the complexity of computation,the pattern of communication, and the potential congestionthat arises during communication.Russ Miller 4 PDCS`96



Coarse Grained Multicomputer (CGM)� CGM(n; p) consists of p processors, each with 
(np) localmemory, where 
(np) is \considerably larger" than �(1).� Arbitrary interconnection network.� Examples: Cray T3D, IBM SP2, Intel Paragon, TMC CM-5� For determining time complexities, consider both local com-putation time and interprocessor communication time.Russ Miller 5 PDCS`96



Previous Results on CGM� Area of union of rectangles [Dehne93]� 3D-maxima [Dehne93]� 2D-nearest neighbors of a point set [Dehne93]� Lower envelope of non-intersecting line segments in plane[Dehne93]� 2D-weighted dominance counting [Dehne93]� Randomized 3D convex hull [Dehne95]Russ Miller 6 PDCS`96



Fundamental Algorithms: Previous Results(Sort-based)Tsort(n; p): the time required to sort �(n) data on a CGM(n; p).Tsort(n; p) time on a CGM(n; p) [Dehne]:� Segmented broadcast: For indices 1 � j1 < j2 < : : : < jq �p, each PE Pji broadcasts a list of np data items to PEsPji+1; : : : ; Pji+1.� Multinode broadcast: Every PE sends the same �(1) datato every other PE.� Total exchange: Every PE sends �(1) data (not necessarilythe same) to every other PE.Russ Miller 7 PDCS`96



Fundamental Algorithms: New Results(Sort-based)Tsort(n; p) time on a CGM(n; p):� Permutation exchange: Given a permutation �, every PE Pisends a list of np data items to PE P�(i).� Semigroup operation: Let X = fxng be distributed evenlyamong the PEs. Let � be a unit-time, associative, binaryoperation on X. Compute x1 � x2 � : : : � xn.Russ Miller 8 PDCS`96



Fundamental Algorithms: New Results(Sort-based)Tsort(n; p) time on a CGM(n; p):� Parallel pre�x: Let X = fxng be distributed evenly amongthe PEs. Let � be a unit-time, associative, binary operationon X. Compute all n members of fx1; x1 � x2; : : : ; x1 � x2 �: : : � xng.� Merge: Let X and Y be lists of ordered data, each evenlydistributed among the PEs, with jXj+jY j = �(n). Combinethese lists so that X [ Y is ordered and evenly distributedamong the PEs.Russ Miller 9 PDCS`96



Fundamental Algorithms: New Results(Sort-based)� Parallel search: Let X = fxmg and Y = fyng be lists, eachdistributed evenly among the PEs. Each xi 2 X searches Yfor a value.Time: Tsort(m+ n; p) on a CGM(m+ n; p).� Formation of combinations: Let X = fxng and let k > 1 be a�xed positive integer. Form the set of �(nk) combinationsof members of X that have exactly k members.Time: O(Tsort(nk; p)) on a CGM(nk; p).Russ Miller 10 PDCS`96



Fundamental Algorithms: New Results(Sort-based)� Formation of pairs from lists: Let X = fxmg and let Y =fyng. Form all pairs (xi; yj), where xi 2 X, yj 2 Y .Time: Tsort(mn; p) on a CGM(mn; p).
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All Rectangles ProblemDefn.: A polygon P is from S � R2 if all vertices of P belong toS. The AR problem is to �nd all rectangles from S.Proposition [VKD91]: Let S � R2, jSj = n. Then a solution tothe AR problem has �(n2 logn) output in the worst case.
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Scalable Algorithm for All Rectangles ProblemTheorem: Let S = fv0; v1; : : : ; vn�1g be given as input. Thenthe AR problem can be solved in Tsort(n2 logn; p) time on aCGM(n2 logn; p).Note: A rectangle may be determined by a pair of oppositesides with nonnegative slope.Russ Miller 13 PDCS`96



Algorithm: All Rectangles Problem1. Form the set L of all line segments with endpoints in S andwith nonnegative slopes.2. Sort the members of L so that if `0 < `1 < `2 and (`0; `2) is apair of opposite sides of a rectangle, then (`0; `1) and (`1; `2)are pairs of opposite sides of rectangles.
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Algorithm (cont'd)3. Using parallel pre�x:{ For each ` 2 L, determine the �rst and last edge in itsgroup.{ For each ` 2 L, determine First(`), the number of rect-angles for which ` is the �rst edge.{ For each ` 2 L, determine Prec(`), the number of rectan-gles that precede it.Russ Miller 15 PDCS`96



Algorithm (cont'd)4. Using parallel search operations:{ Determine the �rst side of every rectangle based on thePrec(`) and First(`) values.{ Determine the second side of every rectangle based onthe Prec(`) and First(`) values.

Russ Miller 16 PDCS`96



Lower EnvelopeDefn.: Let S be a set of polynomial functions ffng. The lowerenvelope of S is the functionLE(x) = minffi(x) j i = 1; : : : ; ng:Theorem: Let k be a �xed positive integer and let S be a setof polynomial functions, each of degree at most k. Assume thatthe members of S are distributed evenly among the processors.Then the lower envelope of S may be determined in slightly worsethan linear time and space.Russ Miller 17 PDCS`96



Envelope-Related ProblemsTheorem: Let S be a set of vertically convex polygons in R2whose boundaries have a total of n line segments. Then theCommon Intersection Problem for S can be solved in slightlyworse than linear time and space.Theorem: Let S be a system of point-objects, each of which isin k�motion in Rd. Then, as a function of t, a nearest memberof S n fs0g to s0 may be described in slightly worse than lineartime and space.Theorem: Let S = fP0; : : : ; Pn�1g be a set of points in the planewith k-motion. Then the ordered intervals of time during whicha given point Pi is an extreme point of hull(S) can be determinedin slightly worse than linear time and space.Russ Miller 18 PDCS`96



Maximal Collinear SetsDefn.: Given a set S of n points in a Euclidean space, �ndall maximal equally-spaced collinear subsets of S determined bysegments of any length `. (The algorithm of [Kahng] runs inoptimal �(n2) serial time.)Theorem: Let d be a �xed positive integer. Let S � Rd,jSj = n. Then the AMESCS Problem can be solved for Sin Tsort(n2; p) time on a CGM(n2; p).Russ Miller 19 PDCS`96



Point Set Pattern MatchingDefn.: Given a set S of points in a Euclidean space Rd and apattern P � Rd, �nd all instances of subsets P 0 � S such that Pand P 0 are congruent.Theorem: The Point Set Pattern Matching Problem in R1 canbe solved on a CGM(k(n�k); p) in optimal Tsort(k(n�k); p) time.
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Summary1. Scalable algorithms on Coarse Grained Multicomputer2. Fundamental Operations3. Geometric Problems4. L. Boxer, R. Miller, and A. Rau-Chaplin, Some scalable paral-lel algorithms for geometric problems, SUNY-Bu�alo, Dept.of Comp. Sci. Tech. Rept. 96-12 (1996).Russ Miller 21 PDCS`96


