Some Scalable Parallel Algorithms for Geometric Problems

L. Boxer, R. Miller, and A. Rau-Chaplin miller@cs.buffalo.edu

Outline

- 1. Motivation
- 2. Models of Computation
- 3. Previous Results
- 4. Fundamental Operations
- 5. Sample Algorithm
- 6. Additional Results
- 7. Summary

Motivation

- Wealth of algorithms: fine-grained models.
- Commercial machines: coarse-grained.
- Fine-grained algorithms do not port well.
- Fine-grained algorithms often tied to interconnection network.
- Consider
 - scalable algorithms
 - interconnection-independent environment
 - geometric problems

Portable Models

- BSP [Valiant90]: supersteps consist of
 - a) local computation,
 - b) global communication, and then
 - c) barrier synchronization.

Input and output pool for each PE.

- LogP [Culler93]: PE is either in operational or stalling mode at each step. Operational: either a) local computation, b) receive message, or c) submit a message.
- C³ [Hambrusch95]: considers the complexity of computation, the pattern of communication, and the potential congestion that arises during communication.

Coarse Grained Multicomputer (CGM)

- CGM(n,p) consists of p processors, each with $\Omega(\frac{n}{p})$ local memory, where $\Omega(\frac{n}{p})$ is "considerably larger" than $\Theta(1)$.
- Arbitrary interconnection network.
- Examples: Cray T3D, IBM SP2, Intel Paragon, TMC CM-5
- For determining time complexities, consider both local computation time and interprocessor communication time.

Previous Results on CGM

- Area of union of rectangles [Dehne93]
- 3D-maxima [Dehne93]
- 2D-nearest neighbors of a point set [Dehne93]
- Lower envelope of non-intersecting line segments in plane [Dehne93]
- 2D-weighted dominance counting [Dehne93]
- Randomized 3D convex hull [Dehne95]

 $T_{sort}(n, p)$: the time required to sort $\Theta(n)$ data on a CGM(n, p).

 $T_{sort}(n, p)$ time on a CGM(n, p) [Dehne]:

- Segmented broadcast: For indices $1 \le j_1 < j_2 < \ldots < j_q \le p$, each PE P_{j_i} broadcasts a list of $\frac{n}{p}$ data items to PEs $P_{j_i+1}, \ldots, P_{j_{i+1}}$.
- Multinode broadcast: Every PE sends the same $\Theta(1)$ data to every other PE.
- Total exchange: Every PE sends $\Theta(1)$ data (not necessarily the same) to every other PE.

 $T_{sort}(n,p)$ time on a CGM(n,p):

- Permutation exchange: Given a permutation σ , every PE P_i sends a list of $\frac{n}{p}$ data items to PE $P_{\sigma(i)}$.
- Semigroup operation: Let $X = \{x_n\}$ be distributed evenly among the PEs. Let \circ be a unit-time, associative, binary operation on X. Compute $x_1 \circ x_2 \circ \ldots \circ x_n$.

Russ Miller

 $T_{sort}(n,p)$ time on a CGM(n,p):

- Parallel prefix: Let X = {x_n} be distributed evenly among the PEs. Let ∘ be a unit-time, associative, binary operation on X. Compute all n members of {x₁, x₁ ∘ x₂, ..., x₁ ∘ x₂ ∘ ... ∘ x_n}.
- *Merge:* Let X and Y be lists of ordered data, each evenly distributed among the PEs, with $|X|+|Y| = \Theta(n)$. Combine these lists so that $X \cup Y$ is ordered and evenly distributed among the PEs.

Parallel search: Let X = {x_m} and Y = {y_n} be lists, each distributed evenly among the PEs. Each x_i ∈ X searches Y for a value.

Time: $T_{sort}(m+n,p)$ on a CGM(m+n,p).

Formation of combinations: Let X = {x_n} and let k > 1 be a fixed positive integer. Form the set of Θ(n^k) combinations of members of X that have exactly k members.

Time: $O(T_{sort}(n^k, p))$ on a $CGM(n^k, p)$.

• Formation of pairs from lists: Let $X = \{x_m\}$ and let $Y = \{y_n\}$. Form all pairs (x_i, y_j) , where $x_i \in X$, $y_j \in Y$. **Time:** $T_{sort}(mn, p)$ on a CGM(mn, p).

All Rectangles Problem

Defn.: A polygon P is from $S \subset R^2$ if all vertices of P belong to S. The AR problem is to find all rectangles from S.

Proposition [VKD91]: Let $S \subset R^2$, |S| = n. Then a solution to the AR problem has $\Theta(n^2 \log n)$ output in the worst case.

Scalable Algorithm for All Rectangles Problem

Theorem: Let $S = \{v_0, v_1, \dots, v_{n-1}\}$ be given as input. Then the AR problem can be solved in $T_{sort}(n^2 \log n, p)$ time on a $CGM(n^2 \log n, p)$.

Note: A rectangle may be determined by a pair of opposite sides with nonnegative slope.

Algorithm: All Rectangles Problem

- 1. Form the set L of all line segments with endpoints in S and with nonnegative slopes.
- 2. Sort the members of *L* so that if $\ell_0 < \ell_1 < \ell_2$ and (ℓ_0, ℓ_2) is a pair of opposite sides of a rectangle, then (ℓ_0, ℓ_1) and (ℓ_1, ℓ_2) are pairs of opposite sides of rectangles.

Algorithm (cont'd)

- 3. Using parallel prefix:
 - For each $\ell \in L$, determine the first and last edge in its group.
 - For each $\ell \in L$, determine $First(\ell)$, the number of rectangles for which ℓ is the first edge.
 - For each $\ell \in L$, determine $Prec(\ell)$, the number of rectangles that precede it.

Algorithm (cont'd)

- 4. Using parallel search operations:
 - Determine the first side of every rectangle based on the $Prec(\ell)$ and $First(\ell)$ values.
 - Determine the second side of every rectangle based on the $Prec(\ell)$ and $First(\ell)$ values.

Lower Envelope

Defn.: Let S be a set of polynomial functions $\{f_n\}$. The lower envelope of S is the function

$$LE(x) = \min\{f_i(x) \mid i = 1, ..., n\}.$$

Theorem: Let k be a fixed positive integer and let S be a set of polynomial functions, each of degree at most k. Assume that the members of S are distributed evenly among the processors. Then the lower envelope of S may be determined in slightly worse than linear time and space.

Envelope-Related Problems

Theorem: Let S be a set of vertically convex polygons in \mathbb{R}^2 whose boundaries have a total of n line segments. Then the Common Intersection Problem for S can be solved in slightly worse than linear time and space.

Theorem: Let S be a system of point-objects, each of which is in k-motion in \mathbb{R}^d . Then, as a function of t, a nearest member of $S \setminus \{s_0\}$ to s_0 may be described in slightly worse than linear time and space.

Theorem: Let $S = \{P_0, \ldots, P_{n-1}\}$ be a set of points in the plane with k-motion. Then the ordered intervals of time during which a given point P_i is an extreme point of hull(S) can be determined in slightly worse than linear time and space.

Maximal Collinear Sets

Defn.: Given a set S of n points in a Euclidean space, find all maximal equally-spaced collinear subsets of S determined by segments of any length ℓ . (The algorithm of [Kahng] runs in optimal $\Theta(n^2)$ serial time.)

Theorem: Let d be a fixed positive integer. Let $S \subset R^d$, |S| = n. Then the AMESCS Problem can be solved for S in $T_{sort}(n^2, p)$ time on a $CGM(n^2, p)$.

Point Set Pattern Matching

Defn.: Given a set S of points in a Euclidean space R^d and a pattern $P \subset R^d$, find all instances of subsets $P' \subset S$ such that P and P' are congruent.

Theorem: The Point Set Pattern Matching Problem in R^1 can be solved on a CGM(k(n-k), p) in optimal $T_{sort}(k(n-k), p)$ time.

Summary

- 1. Scalable algorithms on *Coarse Grained Multicomputer*
- 2. Fundamental Operations
- 3. Geometric Problems
- L. Boxer, R. Miller, and A. Rau-Chaplin, Some scalable parallel algorithms for geometric problems, SUNY-Buffalo, Dept. of Comp. Sci. Tech. Rept. 96-12 (1996).