Some Scalable Parallel Algorithms for Geometric Problems
 L. Boxer, R. Miller, and A. Rau-Chaplin
 miller@cs.buffalo.edu

Outline

1. Motivation
2. Models of Computation
3. Previous Results
4. Fundamental Operations
5. Sample Algorithm
6. Additional Results
7. Summary

Motivation

- Wealth of algorithms: fine-grained models.
- Commercial machines: coarse-grained.
- Fine-grained algorithms do not port well.
- Fine-grained algorithms often tied to interconnection network.
- Consider
- scalable algorithms
- interconnection-independent environment
- geometric problems

Portable Models

- BSP [Valiant90]: supersteps consist of
a) local computation,
b) global communication, and then
c) barrier synchronization.

Input and output pool for each PE.

- LogP [Culler93]: PE is either in operational or stalling mode at each step. Operational: either a) local computation, b) receive message, or c) submit a message.
- C^{3} [Hambrusch95]: considers the complexity of computation, the pattern of communication, and the potential congestion that arises during communication.

Coarse Grained Multicomputer (CGM)

- $C G M(n, p)$ consists of p processors, each with $\Omega\left(\frac{n}{p}\right)$ local memory, where $\Omega\left(\frac{n}{p}\right)$ is "considerably larger" than $\Theta(1)$.
- Arbitrary interconnection network.
- Examples: Cray T3D, IBM SP2, Intel Paragon, TMC CM-5
- For determining time complexities, consider both local computation time and interprocessor communication time.

Previous Results on CGM

- Area of union of rectangles [Dehne93]
- 3D-maxima [Dehne93]
- 2D-nearest neighbors of a point set [Dehne93]
- Lower envelope of non-intersecting line segments in plane [Dehne93]
- 2D-weighted dominance counting [Dehne93]
- Randomized 3D convex hull [Dehne95]

Fundamental Algorithms: Previous Results

(Sort-based)

$T_{\text {sort }}(n, p)$: the time required to sort $\Theta(n)$ data on a $C G M(n, p)$.

$T_{\text {sort }}(n, p)$ time on a $C G M(n, p)$ [Dehne]:

- Segmented broadcast: For indices $1 \leq j_{1}<j_{2}<\ldots<j_{q} \leq$ p, each $\mathrm{PE} P_{j_{i}}$ broadcasts a list of $\frac{n}{p}$ data items to PEs $P_{j_{i}+1}, \ldots, P_{j_{i+1}}$.
- Multinode broadcast: Every PE sends the same Θ (1) data to every other PE.
- Total exchange: Every PE sends Θ (1) data (not necessarily the same) to every other PE.

Fundamental Algorithms: New Results

 (Sort-based)$T_{\text {sort }}(n, p)$ time on a $C G M(n, p)$:

- Permutation exchange: Given a permutation σ, every PE P_{i} sends a list of $\frac{n}{p}$ data items to PE $P_{\sigma(i)}$.
- Semigroup operation: Let $X=\left\{x_{n}\right\}$ be distributed evenly among the PEs. Let o be a unit-time, associative, binary operation on X. Compute $x_{1} \circ x_{2} \circ \ldots \circ x_{n}$.

Fundamental Algorithms: New Results

 (Sort-based)$T_{\text {sort }}(n, p)$ time on a $C G M(n, p)$:

- Parallel prefix: Let $X=\left\{x_{n}\right\}$ be distributed evenly among the PEs. Let o be a unit-time, associative, binary operation on X. Compute all n members of $\left\{x_{1}, x_{1} \circ x_{2}, \ldots, x_{1} \circ x_{2} \circ\right.$ $\left.\ldots \circ x_{n}\right\}$.
- Merge: Let X and Y be lists of ordered data, each evenly distributed among the PEs, with $|X|+|Y|=\Theta(n)$. Combine these lists so that $X \cup Y$ is ordered and evenly distributed among the PEs.

Fundamental Algorithms: New Results (Sort-based)

- Parallel search: Let $X=\left\{x_{m}\right\}$ and $Y=\left\{y_{n}\right\}$ be lists, each distributed evenly among the PEs. Each $x_{i} \in X$ searches Y for a value.
Time: $T_{\text {sort }}(m+n, p)$ on a $\operatorname{CGM}(m+n, p)$.
- Formation of combinations: Let $X=\left\{x_{n}\right\}$ and let $k>1$ be a fixed positive integer. Form the set of $\Theta\left(n^{k}\right)$ combinations of members of X that have exactly k members.
Time: $O\left(T_{\text {sort }}\left(n^{k}, p\right)\right)$ on a $C G M\left(n^{k}, p\right)$.

Fundamental Algorithms: New Results (Sort-based)

- Formation of pairs from lists: Let $X=\left\{x_{m}\right\}$ and let $Y=$ $\left\{y_{n}\right\}$. Form all pairs $\left(x_{i}, y_{j}\right)$, where $x_{i} \in X, y_{j} \in Y$.
Time: $T_{\text {sort }}(m n, p)$ on a $C G M(m n, p)$.

All Rectangles Problem

Defn.: A polygon P is from $S \subset R^{2}$ if all vertices of P belong to S. The $A R$ problem is to find all rectangles from S.

Proposition [VKD91]: Let $S \subset R^{2},|S|=n$. Then a solution to the AR problem has $\Theta\left(n^{2} \log n\right)$ output in the worst case.

Russ Miller	12	PDCS‘96

Scalable Algorithm for All Rectangles Problem

Theorem: Let $S=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ be given as input. Then the AR problem can be solved in $T_{\text {sort }}\left(n^{2} \log n, p\right)$ time on a $C G M\left(n^{2} \log n, p\right)$.

Note: A rectangle may be determined by a pair of opposite sides with nonnegative slope.

Algorithm: All Rectangles Problem

1. Form the set L of all line segments with endpoints in S and with nonnegative slopes.
2. Sort the members of L so that if $\ell_{0}<\ell_{1}<\ell_{2}$ and $\left(\ell_{0}, \ell_{2}\right)$ is a pair of opposite sides of a rectangle, then $\left(\ell_{0}, \ell_{1}\right)$ and $\left(\ell_{1}, \ell_{2}\right)$ are pairs of opposite sides of rectangles.

Algorithm (cont'd)

3. Using parallel prefix:

- For each $\ell \in L$, determine the first and last edge in its group.
- For each $\ell \in L$, determine $\operatorname{First}(\ell)$, the number of rectangles for which ℓ is the first edge.
- For each $\ell \in L$, determine $\operatorname{Prec}(\ell)$, the number of rectangles that precede it.

Algorithm (cont'd)

4. Using parallel search operations:

- Determine the first side of every rectangle based on the $\operatorname{Prec}(\ell)$ and $\operatorname{First}(\ell)$ values.
- Determine the second side of every rectangle based on the $\operatorname{Prec}(\ell)$ and $\operatorname{First}(\ell)$ values.

Russ Miller	16	PDCS‘96

Lower Envelope

Defn.: Let S be a set of polynomial functions $\left\{f_{n}\right\}$. The lower envelope of S is the function

$$
L E(x)=\min \left\{f_{i}(x) \mid i=1, \ldots, n\right\}
$$

Theorem: Let k be a fixed positive integer and let S be a set of polynomial functions, each of degree at most k. Assume that the members of S are distributed evenly among the processors. Then the lower envelope of S may be determined in slightly worse than linear time and space.

Envelope-Related Problems

Theorem: Let S be a set of vertically convex polygons in R^{2} whose boundaries have a total of n line segments. Then the Common Intersection Problem for S can be solved in slightly worse than linear time and space.

Theorem: Let S be a system of point-objects, each of which is in k-motion in R^{d}. Then, as a function of t, a nearest member of $S \backslash\left\{s_{0}\right\}$ to s_{0} may be described in slightly worse than linear time and space.

Theorem: Let $S=\left\{P_{0}, \ldots, P_{n-1}\right\}$ be a set of points in the plane with k-motion. Then the ordered intervals of time during which a given point P_{i} is an extreme point of $\operatorname{hull}(S)$ can be determined in slightly worse than linear time and space.

Maximal Collinear Sets

Defn.: Given a set S of n points in a Euclidean space, find all maximal equally-spaced collinear subsets of S determined by segments of any length ℓ. (The algorithm of [Kahng] runs in optimal $\Theta\left(n^{2}\right)$ serial time.)
Theorem: Let d be a fixed positive integer. Let $S \subset R^{d}$, $|S|=n$. Then the AMESCS Problem can be solved for S in $T_{\text {sort }}\left(n^{2}, p\right)$ time on a $\operatorname{CGM}\left(n^{2}, p\right)$.

Point Set Pattern Matching

Defn.: Given a set S of points in a Euclidean space R^{d} and a pattern $P \subset R^{d}$, find all instances of subsets $P^{\prime} \subset S$ such that P and P^{\prime} are congruent.

Theorem: The Point Set Pattern Matching Problem in R^{1} can be solved on a $\operatorname{CGM}(k(n-k), p)$ in optimal $T_{\text {sort }}(k(n-k), p)$ time.

| Russ Miller 20 | PDCS،96 |
| :--- | :--- | :--- |

Summary

1. Scalable algorithms on Coarse Grained Multicomputer
2. Fundamental Operations
3. Geometric Problems
4. L. Boxer, R. Miller, and A. Rau-Chaplin, Some scalable parallel algorithms for geometric problems, SUNY-Buffalo, Dept. of Comp. Sci. Tech. Rept. 96-12 (1996).
