Miller's Cyberinfrastructure Laboratory (MCIL)

Russ Miller Director, MCIL Dept of Comp Sci & Eng, SUNY-Buffalo Hauptman-Woodward Inst.

NSF, NIH, DOE, NIMA, NYS, HP www.cse.buffalo.edu/faculty/miller/CI/

Advanced

Data

Center for Computational Research

Cyberinfrastructure

- Foster & Kesselman: "a domain-independent computational infrastructure designed to support science."
- NSF: "comprehensive phenomenon that involves creation, dissemination, preservation, and application of knowledge"
- Generic: transparent and ubiquitous application of technologies central to contemporary engineering and science
- NSF Cyberinfrastructure (OCI)
 HPC Hardware and Software
 - **Data Collections**
 - **Science Gateways/Virtual Organizations**

Support of Next Generation Observing Systems

NSF Integrated Cyberinfrastructure Integrated Cyberinfrastructure System Applications Environmental Science High Energy Physics Domain-**Discovery & Innovation** Proteomics/Genomics Education and Training specific Cybertools software Development **Tools & Libraries** Shared Cybertools (software) **Grid Services** & Middleware Distributed Resources Hardware (computation, communication storage, etc.

NSF Director Arden L. Bement: "leadership in cyberinfrastructure may determine America's continued ability to innovate – and thus our ability to compete successfully in the global arena."

Grid Computing Overview

- Coordinate Computing Resources, People, Instruments in Dynamic Geographically-Distributed Multi-Institutional Environment
- Treat Computing Resources like Commodities
 - **Compute cycles, data storage, instruments**
 - **Human communication environments**
- **No Central Control; No Trust**

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

🚇 Home Page - Netscape

, <u>F</u>ile Edit ⊻iew Go Bookmarks <u>T</u>ools <u>W</u>indow <u>H</u>elp

http://www.cse.buffalo.edu/faculty/miller/CI/

🕘 New Tab 🛇 Home Page

🖂 Mail 🐔 Home 🔤 Netscape

CI Lab

Biography **Photos/Videos** Media Coverage Research Overview Grids CI Lab Overview Equipment Documentation Projects News. Publications Personnel WNY/NYS Grid Collaborations Publications Presentations SnB CCR Teaching **Personal Info** Utilities **Contact Info** Home

Cyberinfrastructure Laboratory

_ 🗆 🗙

 \mathbf{X}

Ubiquitous High-End Computing, Data, Networking, & Visualization

> Dr. Russ Miller UB Distinguished Professor

Introduction

In the 21st century, leading academic institutions will embrace our digital data-driven society and empower students to compete in this knowledge-based economy. In order to support research, scholarship, education, and community outreach, the Cyberinfrastructure Laboratory (CI Lab) is dedicated to the integration of research in disciplinary domains, including science, engineering, and biomedicine, with research in enabling technologies and interfaces. The goal is to allow students and scientists to transparently collect, manage, organize, analyze, and visualize data without having to worry about details such as where the data is stored, where the data is processed, where the data is rendered, and so forth. This ease of use and high availability of data and information processing tools will allow for revolutionary advances in all areas of science, engineering, and beyond.

Cyberinfrastructure sits at the core of modern simulation and modeling, which allows for entirely new methods of investigation that allow scholars to address previously unsolvable problems. Specifically, the development of necessary software, algorithms, portals, and interfaces that will enable research and scholarship by freeing end-users from dealing with the complexity of various computing environments is critical to extending the reach of high-end computing, storage, networking, and visualization to the general user community.

Projects in the CI Lab are currently supported by an NSF ITR

Miller's Cyberinfrastructure Lab

Working Philosophy **CI** sits at core of modern simulation & modeling **CI** allows for new methods of investigation to address previously unsolvable problems Focus of MCIL is on development of algorithms, portals, interfaces, middleware Goal of MCIL is to free end-users to do disciplinary work **Funding (2001-pres) DNSF: ITR, CRI, MRI NYS** appropriations **General appropriations**

MCIL Equipment

Experimental Equipment (1.25 TF; 140 Cores; 22TB)

Clusters

OHead Nodes: Dell 1950 (Intel)

OWorkers: Intel 8×2 ×4 & AMD 8×2×2

□ Virtual Memory Machines (2 × Intel 4×4)

Dell GigE Managed Switches

InfiniBand

22 TB Dell Storage (2)

Condor Flock (35 Intel/AMD)

□ *In process*: 40-50TF system

Production Equipment

CI Lab

Dell Workstations; Dell 15 TB Storage

Access to CCR equipment (13TF Dell/Intel clusters)

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Evolution of CI Lab Projects

Buffalo-Based Grid

- **Experimental Grid: Globus & Condor**
- □ Integrate Data & Compute, Monitor, Portal, Node Swapping, Predictive Scheduling/Resource Management
- GRASE VO: Structural Biology, Groundwater Modeling, Earthquake Eng, Comp Chemistry, GIS/BioHazards
- D Buffalo, Buffalo State, Canisius, Hauptman-Woodward
- Western New York Grid
 - ☐ Heterogeneous System: Hardware, Networking, Utilization
 - D Buffalo, Geneseo, Hauptman-Woodward, Niagara
- New York State Grid
 - **Extension to Hardened Production-Level System State-Wide**
 - Albany, Binghamton, Buffalo, Geneseo, Canisius, Columbia, HWI, Niagara, [Cornell, NYU, RIT, Rochester, Syracuse, Marist], {Stony Brook, RPI, Iona}

NYS Grid Resources

- Albany: 8 Dual-Processor Xeon Nodes
- Binghamton: 15 Dual-Processor Xeon Nodes
- Buffalo: 1050 Dual-Processor Xeon Nodes
- Cornell: 30 Dual-Processor Xeon Nodes
- Geneseo State: Sun/AMD with 128 Compute Cores
- Hauptman-Woodward Institute: 50 Dual-Core G5 Nodes
- Marist: 9 P4 Nodes
- Niagara University: 64 Dual-Processor Xeon Nodes
- **NYU: 58 Dual-Processor PowerPC Nodes**
- **RIT: 4 Dual-Processor Xeon Nodes**
- Syracuse: 8 Dual-Processor Xeon Nodes

CI Lab Collaborations

- High-Performance Networking Infrastructure
- Grid3+ Collaboration
- iVDGL Member
 Only External Member
- Open Science Grid
 GRASE VO
- NYS CI Initiative
 Executive Director
 Various WGs
- Grid-Lite: Campus Grid HP Labs Collaboration
 - Innovative Laboratory Prototy Dell Collaboration

CI Lab

University at Buffalo The State University of New York Cyberinfrastructure Laboratory

CI Lab Projects

- Lightweight Grid Monitor (Dashboard)
- Predictive Scheduler
 - **Define quality of service estimates of job completion, by better estimating job runtimes by profiling users.**

Dynamic Resource Allocation

- Develop automated procedures for dynamic computational resource allocation.
- High-Performance Grid-Enabled Data Repositories
 - Develop automated procedures for dynamic data repository creation and deletion.
- Integrated Data Grid
 - **Automated Data File Migration based on profiling users.**
- Grid Portal

Support Nationa Foundat

Supported by the National Science CI Lab Grid Monitor: http://osg.ccr.buffalo.edu/

CI Lab Operations Dashboard

Predictive Scheduler

Build profiles based on statistical analysis of logs of past jobs

- **Per User/Group**
- **Per Resource**

Use these profiles to predict runtimes of new jobs
 Make use of these predictions to determine

 Resources to be utilized
 Availability of Backfill

System Diagram

ACDC-Grid Dynamic Resource Allocation

Data Grid

Motivation:

- Large data collections are emerging as important community resources.
- **Data Grids complement Computational Grids.**
- Definition: A data grid is a network of distributed storage resources, including archival systems, caches, and databases, which are linked logically to create a sense of global persistence.
- Goal: Design and implement transparent management of data distributed across heterogeneous resources.

ACDC-Grid Data Grid

ACDC-Grid Data Grid Functionality

- Basic file management functions are accessible via a platform-independent web interface.
- User-friendly menus/interface.
- File Upload/Download to/from the Data Grid Portal.
- Simple Web-based file editor.
- Efficient search utility.
- Logical display of files (user/ group/ public).
- Ability to logically display files based on metadata (file name, size, modification date, etc.)

Grid-Enabling Application Templates (GATs)

- Structural Biology
 - □ SnB and BnP for Molecular Structure Determination/Phasing
- Groundwater Modeling
 - **Ostrich: Optimization and Parameter Estimation Tool**
 - POMGL: Princeton Ocean Model Great Lakes for Hydrodynamic Circulation
 - **Split:** Modeling Groundwater Flow with Analytic Element Method
- Earthquake Engineering
 - □ EADR: Evolutionary Aseismic Design and Retrofit; Passive Energy Dissipation System for Designing Earthquake Resilient Structures
- Computational Chemistry
 - Q-Chem: Quantum Chemistry Package
- **Geographic Information Systems & BioHazards**
 - *Titan*: Computational Modeling of Hazardous Geophysical Mass Flows

X-Ray Crystallography

- Objective: Provide a 3-D mapping of the atoms in a crystal.
 - **Procedure:**
 - 1. Isolate a single crystal.

2. Perform the X-Ray diffraction experiment.

CI Lab

3. Determine molecular structure that agrees with diffration data.

University at Buffalo The State University of New York Cyberinfrastructure Laboratory

X-Ray Data & Corresponding Molecular Structure

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Shake-and-Bake Method: Dual-Space Refinement

Grid Enabled SnB

Problem Statement

Use all available resources for determining a single structure

Grid Enabling Criteria

- **Run on heterogeneous set of resources**
- Store results in *SnB* database
- □ Mine database (and automagically deploy new jobs) to improve parameter settings
- Runtime Parameters Transparent to User
 - **Assembling Necessary Files**
 - **Number of Processors**
 - **Trials per Processor**
 - **Appropriate Queue and Running Times**

Grid Enabled SnB Execution

User

- **Odefines Grid-enabled** *SnB* job using Grid Portal or *SnB*
- **Osupplies location of data files from Data Grid**
- **Osupplies** *SnB* mode of operation

Grid Portal

Oassembles required *SnB* data and supporting files, execution scripts, database tables.

Odetermines available ACDC-Grid resources.

- **ACDC-Grid job management includes:**
 - **Oautomatic determination of appropriate execution times, number of trials, and number/location of processors,**
 - **Ologging/status of concurrently executing resource jobs, &**
 - **Oautomatic incorporation of** *SnB* **trial results into the molecular structure database.**

NYS Grid Portal

6 6 6

💊 https://grid.ccr.buffalo.edu/

. 🖂 Mail 🐔 Home 🔤 Netscape

🐏 New Tab | 💊 CCR Grid Computing Services:

Cyberinfrastructure Laboratory

Grid Portal

Dr. Russ Miller UB Distinguished Professor of Computer Science & Engineering

CI Lab Grid Portal Info Overview Portal Login Grid Account Info Computational Grid **Job Submission Job/Queue Status MDS Information** Network Status Running/Queued Jobs **PBS Job History** Condor Flock Statistics **GAT/Resource Matrix**

Data Grid

Data Grid Tree Data Grid Upload Data Grid Download Data Grid File Manager Data Grid Replica Manager Data Grid Simulator Data Grid Admin Tools Data Grid Admin File Tools

Contact Us / Staff CI Lab Staff Only

🔊 🖂 🙏 🖭 🚺

Welcome to the Cyberinfrastructure Laboratory Grid Portal

The **Cyberinfrastructure Laboratory**, in conjunction with the **Center for Computational Research**, has created an integrated Data and Computational Grid. This site is devoted to a Grid Portal that provides access to applications that can be run on a variety of grids. A related site contains a **Grid Monitoring System** designed by the Cyberinfrastructure Laboratory.

Applications may be run on the Cyberinfrastructure Laboratory's **ACDC Grid**, **Western New York Grid**, and **New York State Grid**, which includes computational and data storage systems from dozens of institutions throughout the State of New York.

The applications available to the users cover a variety of disciplines, including Bioinformatics, Computational Chemistry, Crystallography and Medical Imaging, to name a few.

The grids developed by the CI Lab support teaching and research activities, as well as providing infrastructure that includes high-end data, computing, imaging, grid-enabled software, all of which relies on the New York State Research Network (**NYSERNet**).

This work is funded by the National Science Foundation (ITR, MRI, CRI), three program projects from The National Institutes of Health, and the Department of Energy.

Software : BnP **Field :** Protein crystal structure determination

Startup Screen for CI Lab Grid Job Submission

			-				
Expand All Collapse All PORTAL LOGOUT User Tools	Software → Template →	General _ Detailed _ Job Information → Information → Definition → Review → Scenario					
» Manage Account	Ad	vanced Computational Data Center Grid Job Submission Instructions					
Grid General Info Projects Computational Grid » Job Submission » Job/Queue Status » MDS Information	The grid-enabling application templates used on the ACDC-Grid are created from the application developers grid user profiles that contain the users standard information uid, name, organization, address, etc., and more specific information such as group id and access level information for each of grid-enabled applciations. This information is stored in a database for each of the grid-enabled applications and can be accessed through selected queries throughout the ACDC-Grid Web Portal.						
 » Network Status » Running/Queued Jobs » PBS Job History » NYS Grid » Condor Flock Statistics 	optional data files, compu	Additionally, each grid-enabled scientific application profile contains information about specific execution parameters, required data files, optional data files, computational requirements, etc. and statistics on application historical ACDC-Grid jobs for predictive runtime estimates. MySQL provides the speed and reliability required for this task and it is currently being used as the ACDC-Grid Web Portal database provider.					
Data Grid Education/Outreach Staff Only CCR HOME Printer Friendly	The grid-enabled versions of many well-defined scientific and engineering applications have very similar general requirements and core functionality that are require for execution in the ACDC-Grid environment. We have identified that sequentially defining milestones for the grid user to complete intuitively guides them through the application workflow.						
	Software Application:	Grid user chooses a grid-enabled software application.					
	Template:	Grid user selects the required and/or optional data files from the ACDC Data Grid. User defined computational requirements are input or a template defined computational requirement runtime estimate is selected.					
	Job Definition:	Grid user defines application specific runtime parameters or accepts default template parameter definitions.					
	Review:	Grid user accepts the template complete job definition workflow or corrects any part of job definition.					
	Execution Scenario:	The grid user has the ability to input an execution scenario or select a ACDC-Grid determined template defined execution scenario.					
	Grid Job Status:	The grid user can view specific grid job completion status, grid job current state (COMPLETE, RUNNING, QUEUED, BLOCKED, FAILED, ETC.), detailed information on all running or queued grid jobs and grid-enabled application specific intermediate and post processing grid job graphics, plots and tables.					
	previously created workfl hundreds of similar workfl template for the grid-ena	nition workflow is then stored in the ACDC-Grid Web Portal database so the grid user may use/modify any ow in creating new job definitions. The job definitions can also be accessed via batch script files for executing ows in an automated fashion. For example, a grid user would first define/save a relatively generic job workflow bled application and then use the batch script capabilities to change the job definition workflow data files or nd execute a series of new grid jobs.					

Continue

Reset Sequence

Reset Current Stage Cancel

Instructions and Description for Running a Job on ACDC-Grid

Full Structure / Substructure Template Selection

» Manage Account Grid General Info		General Information			
Projects Computational Grid » Job Submission	Structure Information	n			
 » Job Gueue Status » MDS Information 	Title: 🔍 🚺	lled			
» Network Status » Running/Queued Jobs	Structure ID :	iled			
 PBS Job History NYS Grid 	Space Group :	19 Select			
» Condor Flock Statistics Data Grid Education / Outreach	Cell Constants and Cell Errors (Cell Errors optional)				
Staff Only CCR HOME	A:	11.516 +/-			
Printer Friendly	в:	15.705 +/-			
	C:	39.310 +/- 0.004			
	Alpha:	90.0 +/-			
	Beta:	90.0 +/-			
	Gamma:	90.0 +/-			
	Native Asymmetric Ur	nit Contents -			
	No Residues (Optional):				
	ASU Contents :	C60H102N6O18 (examples: C6H12O6 OR C6 H12 O6)			
	Initial Data Sets				
	Add Dataset Delet	te Dataset			
	Select dataset to delete	0			
	Datasets	Dataset 1			
		iledhkl			

Default Parameters Based on Template

File Edit View Favorites Tools Help	€GO	Links ×
Address 🙆 https://griddev.ccr.buffalo.edu/jobs/submit/index.php	€¢ Go	Links ×
	∂ Go	Links *
Initial Data Sata		i
Add Dataset Delete Dataset		
Select dataset to delete		
Datasets Dataset 1		
Name (8 chars max): iledhki		
Dataset Type: Native		<u> </u>
File Name (*.hkl) : Browse		
File Type: F, Sig(F)		
Wavelength: 1.5418	and the second	
Max. Resolution: 0.94	Υ.	
Anomalous Dispersion: Not Measured	A.	
Heavy Element Type:		-
Nat. Element Replaced:		
No. Expected Sites:		
F Prime (f'):		3
F Double Prime (f"):		
Continue Reset Sequence Reset Current Stage Cancel		
Return to the Grid Job Menu		
Default Parameters (cont'd)		

User Tools » Manage Account		SnB Job Review
Grid General Info		SIID JOD REVIEW
Projects		
Computational Grid	Grid Job ID:	447
» Job Submission	Selected resource:	clearwater.ccr.buffalo.edu
» Job/Queue Status » MDS Information	Number of processors:	5
» Network Status		720
» Running/Queued Jobs	Wallclock time requested:	720 8400
» PBS Job History	Number of triplet invariant to use:	
» NYS Grid	Start Phases From:	Random Atoms
» Condor Flock Statistics	Random seed (prime):	11909
Data Grid Education/Outreach	Number of trials:	1000
Staff Only	Starting Trial:	1
CCR HOMÉ	Input Phase File:	Unused
Printer Friendly	Input Atom File:	Unused
	Keep complete (every trial) peak file? :	Yes
	Number of Shake-and-bake cycles:	20
	Keep complete (every cycle) trace file? :	No
	Terminate trials failing the R-Ratio test? :	No
	R-Ratio cutoff:	Unused
	Phase Refinement Method:	Parameter Shift(Fast)
	Number of passes through phase set:	3
	Phase shift:	90.0
	Number of shifts:	2
	Number of peaks to select:	84
	Minimum interpeak distance:	3
	Minimum distance between symmetry-related peaks	: 3.0
	Number of special position peaks to keep:	0
	Fourier grid size:	0.31
	Perform extra cycles with more peaks? :	No
	Number of extra cycles:	Unused
	Number of peaks:	Unused
	Trials for E-Fourier filtering (fourier refinement)? :	None
	Number of cycles:	Unused
	Number of peaks:	Unused
	Minimum [E]:	Unused

SnB Review (Grid job ID: 447)

Graphical Representation of Intermediate Job Status

Histogram of Completed Trial Structures

				SnB					
Job Id	Job Name	Resource	Num Procs	Status	Percent Complete	Last Update	Cancel Job	Drilldown	
447	iledhkl	clearwater.ccr.buffalo.edu	5	RUNNING	28.5	15-Mar-2005 10:22:00		~	
446	trilys	clearwater.ccr.buffalo.edu	10	RUNNING	1	15-Mar-2005 10:22:00		4	
444	64chkl	nash.ccr.buffalo.edu	З	COMPLETE	100	14-Mar-2005 22:00:01		~	
443	trilys	clearwater.ccr.buffalo.edu	10	COMPLETE	100	10-Mar-2005 22:48:00		~	
442	pr435hkl	nash.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 17:26:01		~	
441	vancohkl	clearwater.ccr.buffalo.edu	10	COMPLETE	100	10-Mar-2005 18:08:01		~	
434	16chkl	clearwater.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 14:42:01		~	
433	16chkl	clearwater.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 14:38:01		~	

Status of Jobs

User starts up – default image of structure.

Molecule scaled, rotated, and labeled.

New York State Grass Roots Cyberinfrastructure Initiative

- Miller's NYS Grid used as fundamental infrastructure.
- Currently an initiative of NYSERNet.
- Open to academic and research institutions.
- Mission Statement: To create and advance collaborative technological infrastructure that supports and enhances the research and educational missions of institutions in NYS.
- Enable Research, Scholarship, and Economic Development in NYS.
- Currently, no significant utilization.

TRUN: Transborder Research University Network

- Ontario: York, Toronto, Western Ontario, McMaster, Queen's, Waterloo, Guelph
- NYS: Buffalo, Rochester, Syracuse, Cornell, Albany, RIT
- Mission Statement: Expand and support cooperation among research universities in the border region of Province of Ontario and NYS:
 - Collaborative/consortial research
 - □ Joint applications for external funding
 - **Cooperative academic programs**
 - **General Student exchanges**
 - **Shared facilities**

www.trun.ca

□ Joint conferences, symposia, workshops

TRUN: Transborder Research University Network

- Current Focus
 - Great Lakes Sustainable Energy
 - IT-Supported Disciplinary Research
 - □ **<u>High Performance Computing</u>**

- www.trun.ca
- **Canada-U.S. Policy and Standardization of Binational Data**
- General Issues
 - **Public Policy Issues, Regional Governance**
 - **Border Security and Mobility**
 - **Economic and Worforce Development**
 - **University Partnerships with Government and Industry**
 - **Health Care and Policy**
 - **Basic Research and Technology Transfer**

Acknowledgments

- Mark Green
- **Cathy Ruby**
- Amin Ghadersohi
- Naimesh Shah
- Steve Gallo
- Jason Rappleye
- Jon Bednasz
- Sam Guercio
- Martins Innus
- Cynthia Cornelius
- George DeTitta
- Herb Hauptman
- Charles Weeks
- Steve Potter

- Alan Rabideau
- Igor Janckovic
- Michael Sheridan

- Abani Patra
- Matt Jones
- NSF ITRNSF CRINSF MRI
- **NYS**
- **CCR**

